Critical Path Method (CPM) Scheduling has proven to be an effective project management tool. However, teaching the topic has proven difficult to include all elements of CPM yet keep it simple enough for students to un...Critical Path Method (CPM) Scheduling has proven to be an effective project management tool. However, teaching the topic has proven difficult to include all elements of CPM yet keep it simple enough for students to understand. In an effort to simplify the teaching of critical path method scheduling, the issue of two total floats in an activity does not get the attention necessary to address its occurrence. The objective of this paper is to present a mathematical method to show multiple total floats are possible for an activity. Also presented are suggestions for schedule crashing when multiple total floats are found. Two totals floats can be found if constraints (Lag or Lead) or non-Finish-to-Start (FS) relationships, or both are used in a network diagram. Situations are possible where an activity may have a start total float (STF) of zero but have a finish total float (FTF) greater than zero, or vice versa. Because the critical path generally follows the zero total float, these situations, where either the STF or the FTF is critical while the other is not, determines how the critical path activity must be controlled and crashed. This paper will present approaches of how to crash the schedule when a portion of the activity, either start or finish, is critical. Also presented will be methods to teach the subject matter with or without the use of scheduling software. Critical Path Method was revisited to see what the minimal conditions are needed to have activities with two total float. Generalized crashing methods were studied to see if the methods can be used when two total floats exist.展开更多
Purpose: The aim of this study was to determine the incidence and pattern of injuries resulting from auto-tricycle crashes among patients in a tertiary referral centre in Ghana. Methods: Data were retrospectively extr...Purpose: The aim of this study was to determine the incidence and pattern of injuries resulting from auto-tricycle crashes among patients in a tertiary referral centre in Ghana. Methods: Data were retrospectively extracted from hospital records of patients who got involved in auto-tricycle crashes and presented to the Accident and Emergency Centre of the Komfo Anokye Teaching Hospital (KATH), over a one-year period using a structured questionnaire. The gathered data were then entered into an electronic database and then analysed with SPSS version 20.0. Results: The incidence of injury following auto-tricycle crashes over the one-year period was 5.9% (95% CI: 4.9% - 7.0%) with a case fatality rate (FR) of 3.8% (95% CI: 1.3% - 8.7%). All the mortalities resulted from head and neck injuries and none of the patients involved wore a crash helmet. Only 5% of those studied wore crash helmets and were all drivers. Closed fractures accounted for 58% of the injuries, followed by open fractures, 28%. The most commonly fractured bones were the tibia/fibula, followed by the femur and then radius/ulna. The most common mechanism of injury was auto-tricycle toppling over (29%). Passengers were the most injured (48%), followed by drivers (37%) and pedestrians (15%). Most (72%) injuries among participants involved a single body part. On the injury severity scale, most (61%) of patients had minor trauma and 38% had major trauma. Conclusion: Auto-tricycle crashes account for 5.9% of injuries at the study site with a case fatality rate of 3.8%. Passengers had a higher injury rate (48%) than drivers (37%). Fractures of the tibia/fibula were most commonly associated with auto-tricycle crashes. Injuries to the head and neck were responsible for the deaths in the study participants and non-use of a crash helmet was associated with mortalities.展开更多
Florida has the highest number of motorcycle fatalities in the United States and contains the second largest population of registered motorcycles. The COVID-19 pandemic influenced the roads, traffic, and driving behav...Florida has the highest number of motorcycle fatalities in the United States and contains the second largest population of registered motorcycles. The COVID-19 pandemic influenced the roads, traffic, and driving behavior in the continental United States. Motorcycle crashes decreased during the COVID-19 years (2020 and 2021) while the fatality rates increased. The purpose of this study is to 1) investigate motorcycle crashes before and during the Pandemic period to understand the impacts on motorcycle safety and contributing factors to the crash severity levels;2) develop the crash predictive model for different degrees of severity in motorcycle crashes in Florida. Florida statewide crash data were collected. T tests have been conducted to compare the contributing factors between two periods. The injury severities are significantly different among all five levels between those during normal period and the Pandemic period. A crash predictive model has been developed to determine the facts to injury severity levels for motorcycle crashes. A total of eight variables are found to significantly increase the injury severity levels for motorcycle crashes during the Pandemic period.展开更多
This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential p...This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.展开更多
Although there has been a slight decrease in road traffic crashes, fatalities, and injuries in recent years, HCMC (Ho Chi Minh City) will continue to encounter challenges in mitigating and preventing road crashes. Thi...Although there has been a slight decrease in road traffic crashes, fatalities, and injuries in recent years, HCMC (Ho Chi Minh City) will continue to encounter challenges in mitigating and preventing road crashes. This study analyzes road crash data from the past five years, obtained from the Road-Railway Police Bureau (PC08) and TSB (Traffic Safety Board) in HCMC. This analysis gives us valuable insights into road crash patterns, characteristics, and underlying causes. This comprehensive understanding serves as a scientific foundation for developing cohesive strategies and implementing targeted solutions to address road traffic safety issues more effectively in the future.展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
The location of U-turn bays is an important consideration in indirect driveway left-turn treatments.In order to improve the performance of right-turns followed by U-turns(RTUTs),this study evaluates the impacts of t...The location of U-turn bays is an important consideration in indirect driveway left-turn treatments.In order to improve the performance of right-turns followed by U-turns(RTUTs),this study evaluates the impacts of the separation distances between driveway exits and downstream U-turn locations on the safety and operational performance of vehicles making RTUTs.Crash data are investigated at 179 selected roadway segments,and travel time data are measured using video cameras at 29 locations in the state of Florida,USA.Crash rate models and travel time models are developed based on data collected in the field.It is found that the separation distance between driveway exits and downstream U-turn locations significantly impacts the safety and operational performance of vehicles making right turns followed by U-turns.Based on the research results,the minimum and optimal separation distances between driveways and U-turn locations under different roadway conditions are determined to facilitate driver use of RTUTs.The results of this study can be used for future intersection improvement projects in China.展开更多
In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackl...In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackled by the NB component), unobserved heterogeneity and spatial autocorrelation (captured by the CAR process), using Markov chain Monte Carlo methods and the Gibbs sampler. Statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson, NB, zero-inflated Poisson, zero-inflated NB models, due to its lower prediction errors and more robust parameter inference. The study results show that crash frequency and fatalities are positively associated with the number of lanes, curve length, annual average daily traffic (AADT) per lane, as well as rainfall. Speed limit and the distances to the nearest hospitals have negative associations with segment-based crash counts but positive associations with fatality counts, presumably as a result of worsened collision impacts at higher speed and time loss during transporting crash victims.展开更多
文摘Critical Path Method (CPM) Scheduling has proven to be an effective project management tool. However, teaching the topic has proven difficult to include all elements of CPM yet keep it simple enough for students to understand. In an effort to simplify the teaching of critical path method scheduling, the issue of two total floats in an activity does not get the attention necessary to address its occurrence. The objective of this paper is to present a mathematical method to show multiple total floats are possible for an activity. Also presented are suggestions for schedule crashing when multiple total floats are found. Two totals floats can be found if constraints (Lag or Lead) or non-Finish-to-Start (FS) relationships, or both are used in a network diagram. Situations are possible where an activity may have a start total float (STF) of zero but have a finish total float (FTF) greater than zero, or vice versa. Because the critical path generally follows the zero total float, these situations, where either the STF or the FTF is critical while the other is not, determines how the critical path activity must be controlled and crashed. This paper will present approaches of how to crash the schedule when a portion of the activity, either start or finish, is critical. Also presented will be methods to teach the subject matter with or without the use of scheduling software. Critical Path Method was revisited to see what the minimal conditions are needed to have activities with two total float. Generalized crashing methods were studied to see if the methods can be used when two total floats exist.
文摘Purpose: The aim of this study was to determine the incidence and pattern of injuries resulting from auto-tricycle crashes among patients in a tertiary referral centre in Ghana. Methods: Data were retrospectively extracted from hospital records of patients who got involved in auto-tricycle crashes and presented to the Accident and Emergency Centre of the Komfo Anokye Teaching Hospital (KATH), over a one-year period using a structured questionnaire. The gathered data were then entered into an electronic database and then analysed with SPSS version 20.0. Results: The incidence of injury following auto-tricycle crashes over the one-year period was 5.9% (95% CI: 4.9% - 7.0%) with a case fatality rate (FR) of 3.8% (95% CI: 1.3% - 8.7%). All the mortalities resulted from head and neck injuries and none of the patients involved wore a crash helmet. Only 5% of those studied wore crash helmets and were all drivers. Closed fractures accounted for 58% of the injuries, followed by open fractures, 28%. The most commonly fractured bones were the tibia/fibula, followed by the femur and then radius/ulna. The most common mechanism of injury was auto-tricycle toppling over (29%). Passengers were the most injured (48%), followed by drivers (37%) and pedestrians (15%). Most (72%) injuries among participants involved a single body part. On the injury severity scale, most (61%) of patients had minor trauma and 38% had major trauma. Conclusion: Auto-tricycle crashes account for 5.9% of injuries at the study site with a case fatality rate of 3.8%. Passengers had a higher injury rate (48%) than drivers (37%). Fractures of the tibia/fibula were most commonly associated with auto-tricycle crashes. Injuries to the head and neck were responsible for the deaths in the study participants and non-use of a crash helmet was associated with mortalities.
文摘Florida has the highest number of motorcycle fatalities in the United States and contains the second largest population of registered motorcycles. The COVID-19 pandemic influenced the roads, traffic, and driving behavior in the continental United States. Motorcycle crashes decreased during the COVID-19 years (2020 and 2021) while the fatality rates increased. The purpose of this study is to 1) investigate motorcycle crashes before and during the Pandemic period to understand the impacts on motorcycle safety and contributing factors to the crash severity levels;2) develop the crash predictive model for different degrees of severity in motorcycle crashes in Florida. Florida statewide crash data were collected. T tests have been conducted to compare the contributing factors between two periods. The injury severities are significantly different among all five levels between those during normal period and the Pandemic period. A crash predictive model has been developed to determine the facts to injury severity levels for motorcycle crashes. A total of eight variables are found to significantly increase the injury severity levels for motorcycle crashes during the Pandemic period.
文摘This paper examines the relationship between fatal road traffic accidents and potential predictors using multilayer perceptron artificial neural network (MLANN) models. The initial analysis employed twelve potential predictors, including traffic volume, prevailing weather conditions, roadway characteristics and features, drivers’ age and gender, and number of lanes. Based on the output of the model and the variables’ importance factors, seven significant variables are identified and used for further analysis to improve the performance of models. The model is optimized by systematically changing the parameters, including the number of hidden layers and the activation function of both the hidden and output layers. The performances of the MLANN models are evaluated using the percentage of the achieved accuracy, R-squared, and Sum of Square Error (SSE) functions.
文摘Although there has been a slight decrease in road traffic crashes, fatalities, and injuries in recent years, HCMC (Ho Chi Minh City) will continue to encounter challenges in mitigating and preventing road crashes. This study analyzes road crash data from the past five years, obtained from the Road-Railway Police Bureau (PC08) and TSB (Traffic Safety Board) in HCMC. This analysis gives us valuable insights into road crash patterns, characteristics, and underlying causes. This comprehensive understanding serves as a scientific foundation for developing cohesive strategies and implementing targeted solutions to address road traffic safety issues more effectively in the future.
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
文摘The location of U-turn bays is an important consideration in indirect driveway left-turn treatments.In order to improve the performance of right-turns followed by U-turns(RTUTs),this study evaluates the impacts of the separation distances between driveway exits and downstream U-turn locations on the safety and operational performance of vehicles making RTUTs.Crash data are investigated at 179 selected roadway segments,and travel time data are measured using video cameras at 29 locations in the state of Florida,USA.Crash rate models and travel time models are developed based on data collected in the field.It is found that the separation distance between driveway exits and downstream U-turn locations significantly impacts the safety and operational performance of vehicles making right turns followed by U-turns.Based on the research results,the minimum and optimal separation distances between driveways and U-turn locations under different roadway conditions are determined to facilitate driver use of RTUTs.The results of this study can be used for future intersection improvement projects in China.
基金The National Science Foundation by Changjiang Scholarship of Ministry of Education of China(No.BCS-0527508)the Joint Research Fund for Overseas Natural Science of China(No.51250110075)+1 种基金the Natural Science Foundation of Jiangsu Province(No.SBK200910046)the Postdoctoral Science Foundation of Jiangsu Province(No.0901005C)
文摘In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackled by the NB component), unobserved heterogeneity and spatial autocorrelation (captured by the CAR process), using Markov chain Monte Carlo methods and the Gibbs sampler. Statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson, NB, zero-inflated Poisson, zero-inflated NB models, due to its lower prediction errors and more robust parameter inference. The study results show that crash frequency and fatalities are positively associated with the number of lanes, curve length, annual average daily traffic (AADT) per lane, as well as rainfall. Speed limit and the distances to the nearest hospitals have negative associations with segment-based crash counts but positive associations with fatality counts, presumably as a result of worsened collision impacts at higher speed and time loss during transporting crash victims.