期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Design of crashworthy attenuator structures as a part of vehicle safetyagainst impact:Application of waste aluminum can-based material
1
作者 Laksmana Widi Prasetya Aditya Rio Pr abowo +2 位作者 Ubaidillah Ubaidillah Iwan Istanto Nur Azmah Binti Nordin 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第2期85-93,共9页
The impact attenuator is an essential system in both race cars and urban vehicles.The structure of animpact attenuator serves as a safety barrier between the impacted surface and the driver in an accident.Attenuator m... The impact attenuator is an essential system in both race cars and urban vehicles.The structure of animpact attenuator serves as a safety barrier between the impacted surface and the driver in an accident.Attenuator materials tend to have a high price;thus,alternative materials were explored in the currentwork,i.e.,used cans from food and beverage containers.The study deployed a nonlinear finite elementalgorithm to calculate a series of impacts on the attenuator structures.The thickness of the cans andvelocity of the impact were considered as the main parameters.Analysis results concluded that the at-tenuator’s average energy was 16000 J for a can thickness of 1 mm.This value is more than two times the0.5 mm thick used cans.The attenuator’s new design was then matched with an attenuator regulation,and the results surpassed the standard value of 7350 J. 展开更多
关键词 Attenuator structure Waste can Vehicle safety Crashworthiness analysis Impact phenomenon
下载PDF
Crashworthiness Design and Multi-Objective Optimization of Bionic Thin-Walled Hybrid Tube Structures
2
作者 Pingfan Li Jiumei Xiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期999-1016,共18页
Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study propo... Thin-walled structures are widely used in cars due to their lightweight construction and energy-absorbing properties.However,issues such as high initial stress and lowenergy-absorbing efficiency arise.This study proposes a novel energy-absorbing structure inwhich a straight tube is combinedwith a conical tube and a bamboo-inspired bulkhead structure is introduced.This configuration allows the conical tube to flip outward first and then fold together with the straight tube.This deformation mode absorbs more energy and less peak force than the conical tube sinking and flipping inward.Through finite element numerical simulation,the specific energy absorption capacity of the structure is increased by 26%compared to that of a regular circular cross-section tube.Finally,the impact resistance of the bionic straight tapered tube structure is further improved through multi-objective optimization,promoting the engineering application and lightweight design of hybrid cross-section tubes. 展开更多
关键词 CRASHWORTHINESS tube inversion multi-objective optimization energy absorption
下载PDF
Static strength and crashworthiness analysis of a train cowcatcher at a running speed of 160 km/h
3
作者 Yanzhao Guo Lele Zhang +2 位作者 Weiyuan Dou Yu Zhu Haifeng Zhang 《High-Speed Railway》 2023年第4期258-264,共7页
The cowcatcher is one of the unique devices at the front end of the train, which can remove obstacles on the track by crashing before the vehicle body to ensure the safety of the train. When a collision accident happe... The cowcatcher is one of the unique devices at the front end of the train, which can remove obstacles on the track by crashing before the vehicle body to ensure the safety of the train. When a collision accident happens, the cowcatcher serves as the first energy-absorbing structure to dissipate and guide the collision energy. The design of the existing cowcatcher of multiple units generally focuses on the good ability to remove obstacles, while the secondary function, the crashworthiness of orderly deformation under collision, still needs further research. In this study, a finite element model of structural static load and collision analysis was established under standard EN 15227, with the cowcatcher for 160 km/h train as the prototype. Then the solution and simulation process was accomplished under the environment of ANSYS and LS-DYNA. The analysis results showed that the structural static strength of the current cowcatcher met the requirements of the standard EN 15227, and the longitudinal stiffness was evenly distributed. When removing the obstacles with low mass, the impact force was small and the structure would not produce obvious deformation;when removing the obstacles with large mass, the impact force was large and the shear fracture might occur at the connection of the cowcatcher. 展开更多
关键词 Cowcatcher Passive safety Static strength Crashworthiness analysis
下载PDF
Design of lightweight magnesium car body structure under crash and vibration constraints 被引量:25
4
作者 Morteza Kiani Imtiaz Gandikota +1 位作者 Masoud Rais-Rohani Keiichi Motoyama 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第2期99-108,共10页
Car body design in view of structural performance and lightweighting is a challenging task due to all the performance targets that must be satisfied such as vehicle safety and ride quality.In this paper,material repla... Car body design in view of structural performance and lightweighting is a challenging task due to all the performance targets that must be satisfied such as vehicle safety and ride quality.In this paper,material replacement along with multidisciplinary design optimization strategy is proposed to develop a lightweight car body structure that satisfies the crash and vibration criteria while minimizing weight.Through finite element simulations,full frontal,offset frontal,and side crashes of a full car model are evaluated for peak acceleration,intrusion distance,and the internal energy absorbed by the structural parts.In addition,the first three fundamental natural frequencies are combined with the crash metrics to form the design constraints.The wall thicknesses of twenty-two parts are considered as the design variables.Latin Hypercube Sampling is used to sample the design space,while Radial Basis Function methodology is used to develop surrogate models for the selected crash responses at multiple sites as well as the first three fundamental natural frequencies.A nonlinear surrogate-based optimization problem is formulated for mass minimization under crash and vibration constraints.Using Sequential Quadratic Programming,the design optimization problem is solved with the results verified by finite element simulations.The performance of the optimum design with magnesium parts shows significant weight reduction and better performance compared to the baseline design. 展开更多
关键词 Multidisciplinary design optimization Magnesium structure Car body structure CRASHWORTHINESS VIBRATION Vehicle design
下载PDF
Hybrid reinforced thermoset polymer composite in energy absorption tube application:A review 被引量:7
5
作者 A.B.M.Supian S.M.Sapuan +2 位作者 M.Y.M.Zuhri E.S.Zainudin H.H.Ya 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第4期291-305,共15页
The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understa... The custom of hybridization fibre composite in energy absorption tube application has gained the attention of structural crashworthiness in composite material industry. Thus, the approach of this review is to understand the effect in hybridization within metal/synthetic fibre composite, synthetic/synthetic fibre composite and nature/synthetic fibre composite as energy absorption tube, which reflects on the energy absorption characteristics and crashworthiness behaviors in previous the study. By way of instance, a wide range of methodology and particular parameter in previous study such as the effect in fibre arrangement, matrix polymer, technique of fabrication, fibre treatment(natural fibre), design in geometry/cross-section and others mechanism of hybrid fibre composite tube are highlighted which to comprehend the capability of the mechanical performance and collapsible behavior as sacrificial structure in high-performance structure applications. Moreover, in the recently studies there have been many of the research regarding structural materials as energy absorption tube has been introduced such as metal/matrix composites, new alloy metals and polymer composites which intended to evaluate the performance of these materials into circumstance in loading and impact characteristic. Therefore, this review article is trying to explore the research articles related to the effect of hybridization fibres and thermoset polymer as reinforcement for energy absorption tube research and expected would provide an information and idea which to expend the knowledge in future study of hybridization effect for energy absorption tube, moreover the development for future potential as new hybrid composite fibre materials from the natural/synthetic fibres reinforced composite material in employing of high-performance energy absorption tube application is still less discover and highlighted. 展开更多
关键词 ENERGY absorption tube HYBRID composites COLLAPSE behavior CRASHWORTHINESS
下载PDF
Recent research development of energy-absorption structure and application for railway vehicles 被引量:12
6
作者 GAO Guang-jun ZHUO Tian-yu GUAN Wei-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1012-1038,共27页
As the application of energy-absorption structure reaches an unprecedented scale in both academia and industry, a reflection upon the state-of-the-art developments in the crashworthiness design and structural optimiza... As the application of energy-absorption structure reaches an unprecedented scale in both academia and industry, a reflection upon the state-of-the-art developments in the crashworthiness design and structural optimization, becomes vital for successfully shaping the future energy-absorption structure. Physical impacting test and numerical simulation are the main methods to study the crashworthiness of railway vehicles at present. The end collision deformation area of the train can generally be divided into two kinds of structural design forms: integral absorbing structure design form and specific energy absorbing structure design form, and different energy-absorption structures introduced in this article can be equipped on different railway vehicles, so as to meet the balance of crashworthiness and economy. In pursuit of improving the capacity of energy dissipation in energy-absorption structures, studies are increasingly investigating multistage energy absorption systems, searching breakthrough when the energy dissipation capacity of the energy-absorption structure reaches its limit. In order to minimize injuries, a self-protective posture for occupants is also studied. Despite the abundance of energy-absorption structure research methods to-date, the problems of analysis and prediction during impact are still scarce, which is constituting one of many key challenges for the future. 展开更多
关键词 railway vehicle energy-absorption structure CRASHWORTHINESS
下载PDF
Simulation and Analysis of Crashworthiness of Fuel Tank for Helicopters 被引量:7
7
作者 LUO Cheng LIU Hua +1 位作者 YANG Jia-ling LIU Kai-xin 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第3期230-235,共6页
Crashworthiness requirement of fuel tanks is one of the important requirements in helicopter designs. The relations among the protection frame, textile layer and rubber layer of the fuel tank are introduced. Two appro... Crashworthiness requirement of fuel tanks is one of the important requirements in helicopter designs. The relations among the protection frame, textile layer and rubber layer of the fuel tank are introduced. Two appropriate FE models are established, one is for an uncovered helicopter fuel tank without protection frame, and the other is for fuel tank with protection frame. The dynamic responses of the two types of fuel tanks impinging on the ground with velocities of 17.3 m/s are numerically simulated for the purpose of analyzing energy-absorbing capabilities of the textile layer and protection frame. The feasibility of the current crashworthiness design of the fuel tank is examined though comparing the dynamic response behaviors of the two fuel tanks. 展开更多
关键词 fuel tank CRASHWORTHINESS HELICOPTER FEM
下载PDF
Crashworthiness design of density-graded cellular metals 被引量:10
8
作者 Xiaokai Wang Zhijun Zheng Jilin Yu 《Theoretical & Applied Mechanics Letters》 CAS 2013年第3期9-13,共5页
Crashworthiness of cellular metals with a linear density gradient was analyzed by using cell-based finite element models and shock models. Mechanisms of energy absorption and deformation of graded cellular metals were... Crashworthiness of cellular metals with a linear density gradient was analyzed by using cell-based finite element models and shock models. Mechanisms of energy absorption and deformation of graded cellular metals were explored by shock wave propagation analysis. Results show that a positive density gradient is a good choice for protecting the impacting object because it can meet the crashworthiness requirements of high energy absorption, stable impact resistance and low peak stress. 展开更多
关键词 functionally graded materials deformation localization shock model CRASHWORTHINESS
下载PDF
Crashworthiness of innovative hexagonal honeycomb-like structures subjected to out-of-plane compression 被引量:8
9
作者 WANG Zhong-gang SHI Chong +1 位作者 DING San-san LIANG Xi-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期621-628,共8页
Seeking for innovative structures with higher mechanical performance is a continuous target in railway vehicle crashworthiness design.In the present study,three types of hexagonal reinforced honeycomb-like structures ... Seeking for innovative structures with higher mechanical performance is a continuous target in railway vehicle crashworthiness design.In the present study,three types of hexagonal reinforced honeycomb-like structures were developed and analyzed subjected to out-of-plane compression,namely triangular honeycomb(TH),double honeycomb(DH)and full inside honeycomb(FH).Theoretical formulas of average force and specific energy absorption(SEA)were constructed based on the energy minimization principle.To validate,corresponding numerical simulations were carried out by explicit finite element method.Good agreement has been observed between them.The results show that all these honeycomb-like structures maintain the same collapsed stages as conventional honeycomb;cell reinforcement can significantly promote the performance,both in the average force and SEA;full inside honeycomb performs better than the general,triangular and double schemes in average force;meanwhile,its SEA is close to that of double scheme;toroidal surface can dissipate higher plastic energy,so more toroidal surfaces should be considered in design of thin-walled structure.These achievements pave a way for designing high-performance cellular energy absorption devices. 展开更多
关键词 honeycomb-like structure CRASHWORTHINESS basic fold element structural reinforcement
下载PDF
Crashworthiness Analysis on Alternative Square Honeycomb Structure under Axial Loading 被引量:5
10
作者 LI Meng DENG Zongquan +2 位作者 GUO Hongwei LIU Rongqiang DING Beichen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期784-792,共9页
Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the... Hexagonal metal honeycomb is widely used in energy absorption field for its special construction. However, many other metal honeycomb structures also show good energy absorption characteristics. Currently, most of the researches focus on hexagonal honeycomb, while few are performed into different honeycomb structures. Therefore, a new alternative square honeycomb is developed to expand the non-hexagonal metal honeycomb applications in the energy absorption fields with the aim of designing low mass and low volume energy absorbers. The finite element model of alternative square honeycomb is built to analyze its specific energy absorption property. As the diversity of honeycomb structure, the parameterized metal honeycomb finite element analysis program is conducted based on PCL language. That program can automatically create finite element model. Numerical results show that with the same foil thickness and cell length of metal honeycomb, the alternative square has better specific energy absorption than hexagonal honeycomb. Using response surface method, the mathematical formulas of honeycomb crashworthiness properties are obtained and optimization is done to get the maximum specific energy absorption property honeycomb. Optimal results demonstrate that to absorb same energy, alternative square honeycomb can save 10% volume of buffer structure than hexagonal honeycomb can do. This research is significant in providing technical support in the extended application of different honeycomb used as crashworthiness structures, and is absolutely essential in low volume and low mass energy absorber design. 展开更多
关键词 CRASHWORTHINESS alternative square honeycomb energy-absorption characteristic response surface methodology numerical simulation
下载PDF
Crushing analysis and multi-objective optimization of bitubular hexagonal columns with ribs 被引量:3
11
作者 ZOU Xiang GAO Guang-jun +4 位作者 DONG Hai-peng LI Jian ZHOU Xi-sai CHEN Wei GUAN Wei-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1164-1173,共10页
In order to improve the crashworthiness of thin-walled columns, the energy absorption characteristics of three columns under quasi-static axial crushing loads were analyzed through LS-DYNA. Numerical results show that... In order to improve the crashworthiness of thin-walled columns, the energy absorption characteristics of three columns under quasi-static axial crushing loads were analyzed through LS-DYNA. Numerical results show that the energy absorption capability of the bitubular hexagonal columns with middle to middle(MTM) ribs is the best, followed by the bitubular hexagonal columns with corner to corner(CTC) ribs and the bitubular hexagonal columns without(NOT) ribs, respectively. Then, the MTM rib was optimized by using multi-objective particle swarm optimization algorithm. Through the analysis of the Pareto front for specific energy absorption(SEA, A_(se)) and peak crushing force(PCF, F_(pc)), it is found that there is a vertex on the Pareto front. The vertex has the design parameters of t_1=1.2 mm, t_2=1.2 mm, A_(se)=11.3729 k J/kg, F_(pc)=235.8491 kN. When the PCF is in a certain size, on the left of the vertex, the point with t_2=1.2 mm has the biggest SEA, meanwhile on the right of the vertex, the point with t_1=1.2 mm has the biggest SEA. Finally, the global sensitivity analysis was conducted to investigate the effect of two design parameters. The result is obtained that both SEA and PCF for MTM are more sensitive to t_1 rather than t_2 in the design domain. 展开更多
关键词 bitubular HEXAGONAL column axial CRUSHING CRASHWORTHINESS optimization global sensitivity ANALYSIS
下载PDF
Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures 被引量:5
12
作者 Shaoqiang Xu Weiwei Li +2 位作者 Lin Li Tao Li Chicheng Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期929-947,共19页
Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are propose... Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures. 展开更多
关键词 Bionic structure crashworthiness design hierarchical tube multi-objective optimization
下载PDF
Improved concept models for straight thin-walled columns with box cross section 被引量:4
13
作者 Yu-cheng LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第11期1473-1479,共7页
This paper focuses on developing improved concept models for straight thin-walled box sectional columns which can better predict the peak crushing force that occurs during crashworthiness analyses. We develop a nonlin... This paper focuses on developing improved concept models for straight thin-walled box sectional columns which can better predict the peak crushing force that occurs during crashworthiness analyses. We develop a nonlinear translational spring based on previous research and apply such a spring element to build the enhanced concept models. The work presented in this article is developed on the basis of the publication of the author (Liu and Day, 2006b) and has been applied in a crashworthiness design issue, which is presented by the author in another paper (Liu, 2008). 展开更多
关键词 Concept model Peak crushing force Box section Nonlinear translational springs Crashworthiness analysis Thin-walled column
下载PDF
Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading 被引量:4
14
作者 M.SALEHI S.M.H.MIRBAGHERI A.JAFARI RAMIANI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期92-110,共19页
The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid st... The deformation behavior and crashworthiness of functionally-graded foam-filled tubes(FGFTs)under drop-weight impact loading were investigated.Closed cell aluminum,A356 alloy and zinc foams fabricated by the liquid state processing were used as axial grading fillers for the manufacture of single-layer and multilayer structures with different configurations.The results indicate that the deformation of multilayer foam filled tubes initiates from the low-strength components,and then propagates in the high-strength components through the gradual increment of stress.The use of more A356 alloy and aluminum foam layers provides greater specific energy absorption(SEA)for the graded structures,whereas the high-strength zinc foam has no positive effect on the crash performance.The progressive collapse of graded structures consisting of the aluminum and A356 alloy foams occurs in a symmetric mode under quasi-static and drop-weight impact conditions.However,the zinc foam causes a combination of symmetric and extension modes as well as greater localized deformation under dynamic loading and greater local rupture in quasi-static loading condition.The Al−A356 foam-filled tubes with a combination of the highest SEA(10 J/g)and the lowest initial peak stress(σmax of 10.2 MPa)are considered as the best lightweight crashworthy structures. 展开更多
关键词 functionally-graded foam-filled tube drop-weight impact deformation behavior specific energy absorption CRASHWORTHINESS
下载PDF
Optimizing crashworthiness design of square honeycomb structure 被引量:4
15
作者 李萌 邓宗全 +2 位作者 郭宏伟 刘荣强 丁北辰 《Journal of Central South University》 SCIE EI CAS 2014年第3期912-919,共8页
To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was ... To provide theoretical basis for square honeycombs used as crashworthy structures, energy-absorption properties of metal square honeycombs and the size optimization were performed. Specific energy absorption(SEA) was defined as the energy absorbed by the honeycomb structure per unit volume. This parameter was often used for determining the crashworthiness of thin-walled structures. In order to find the most optimized metal square honeycomb structure with the maximum SEA and the lowest peak stress, the cell length and the foil thickness of the metal honeycombs were optimized, with a low peak stress and a high SEA set as the two primary objectives. The pre-processing software Patran was used to build FE models, and the explicit solver LS-DYNA was employed to perform the crashworthiness analyses. The results show that the square honeycomb exhibits good energy absorption performance in some cases. The geometry is effective using 16.8% less buffer structure volume than the hexagonal honeycombs with a peak stress limitation of 1.21 MPa. 展开更多
关键词 CRASHWORTHINESS square honeycomb response surface methodology numerical simulation multi-objective optimization
下载PDF
Design optimization of the S-frame to improve crashworthiness 被引量:3
16
作者 Shu-Tian Liu Ze-Qi Tong +1 位作者 Zhi-Liang Tang Zong-Hua Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第4期589-599,共11页
In this paper, the S-frames, the front side rail structures of automobile, were investigated for crashworthihess. Various cross-sections including regular polygon, nonconvex polygon and multi-cell with inner stiffener... In this paper, the S-frames, the front side rail structures of automobile, were investigated for crashworthihess. Various cross-sections including regular polygon, nonconvex polygon and multi-cell with inner stiffener sections were investigated in terms of energy absorption of S-frames. It was determined through extensive numerical simulation that a multi-celI S-frame with double vertical internal stiffeners can absorb more energy than the other configurations. Shape optimization was also carried out to improve energy absorption of the S-frame with a rectangular section. The center composite design of experiment and the sequential response surface method (SRSM) were adopted to construct the approximate design sub-problem, which was then solved by the feasible direction method. An innovative double S- frame was obtained from the optimal result. The optimum configuration of the S-frame was crushed numerically and more plastic hinges as well as shear zones were observed during the crush process. The energy absorption efficiency of the structure with the optimal configuration was improved compared to the initial configuration. 展开更多
关键词 Thin-walled structure S-frame Axial crush Response surface CRASHWORTHINESS
下载PDF
Dependence of flow strength and deformation mechanisms in common wrought and die cast magnesium alloys on orientation,strain rate and temperature 被引量:4
17
作者 S.Xu W.R.Tyson +6 位作者 R.Eagleson R.Zavadil Z.Liu P.-L.Mao C.-Y.Wang S.I.Hill A.A.Luo 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第4期275-282,共8页
The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main r... The controlling plastic deformation mechanisms(i.e.slip or twinning)and the structural crash performance of Mg alloys are strongly influenced by loading mode,texture and microstructure.This paper summarizes the main results from an experimental program to assess these effects for commercial Mg alloy extrusions(AM30 and AZ31),sheet(AZ31),and high pressure die castings(HPDC,AM50 and AM60).Uniaxial tensile and compressive tests were performed over a wide range of strain rate and temperature(i.e.0.00075–2800 s^(−1) and 100℃ to−150℃)using conventional servo-hydraulic and high-strain-rate universal test machines and a split-Hopkinson-bar(SHB)apparatus.In primarily-slip-dominant deformation,the true stress–strain curves showed approximate power-law behavior,and the effects of strain rate and temperature on yield strength could be approximately described by constitutive equations linearly dependent on the rate parameter,Tln(5.3×10^(7)/ɛ˙)where T is test temperature in Kelvin andɛ˙is strain rate in s^(−1).In primarily-twin-dominant deformation,the effects of strain rate and temperature on yield and initial flow stress were negligible or small from quasi-static to 2800 s^(−1) owing to the athermal characteristics of mechanical twinning;the effects may become more pronounced with exhaustion of twinning and increasing proportion of slip. 展开更多
关键词 Constitutive equation Effects of strain rate and temperature Effects of orientation CRASHWORTHINESS Magnesium alloy
下载PDF
Investigation on structural component behaviours of double bottom arrangement under grounding accidents 被引量:2
18
作者 Aditya Rio Prabowo Teguh Muttaqie +1 位作者 Jung Min Sohn Bangun I.R.Harsritanto 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第1期50-59,I0004,共11页
Marine accidents have caused immense casualties on various parties in shipping and shipbuilding industries, including financial and structural losses. This situation makes ship accident becomes a critical subject in n... Marine accidents have caused immense casualties on various parties in shipping and shipbuilding industries, including financial and structural losses. This situation makes ship accident becomes a critical subject in naval architecture and marine structures, as it needs continuous assessment and investigation to broaden insight and data of collision and grounding phenomena. The paper aims to investigate structural conditions of a ship arranged by double hull system under accidental scenario, namely ship grounding. Fundamental concept of structure-rock interaction in poweredhard grounding is adopted to design impact configuration for calculation using finite element(FE)simulation. Involved entities are defined as the structure represented by tanker vessel, and oceanic rock is deployed as the indenter in analysis. Calculation results indicate that the crashworthiness capability of structural part strengthened by longitudinal girder is higher than other selected locations on the structures against rock penetration. Localized flooding of storage oil may occur during raking damage is formed on structural part between two girders. 展开更多
关键词 Bottom raking Double hull TANKER OCEANIC rock STRUCTURAL CRASHWORTHINESS STRESS-STRAIN responses
下载PDF
Crashworthiness assessment of thin-walled double bottom tanker: A variety of ship grounding incidents 被引量:2
19
作者 Aditya Rio Prabowo Sukmaji Indro Cahyono Jung Min Sohn 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2019年第5期320-327,I0005,共9页
This study addresses the issue of ship accidental grounding as an impact phenomenon,with the assumption that an interaction of its structure with the oceanic seabed(obstruction),idealized as rock topology,is capable o... This study addresses the issue of ship accidental grounding as an impact phenomenon,with the assumption that an interaction of its structure with the oceanic seabed(obstruction),idealized as rock topology,is capable of initiating a so-called hard ground scenario.This occurrence variation was considered by performing two main instances,encompassing raking and stranding,often experienced by oil/chemical tankers as thin-walled structures.In addition,a failure criterion was implemented on the structural geometry,in order to define its ultimate limit and possible damage,during interaction with the obstructions.Subsequently,the analysis results were compiled to assess structural crashworthiness as well as progressive failure of the double bottom part of the tanker,where energy criterion indicated the raking to be more destructive.Meanwhile,detailed observation of the failure sequence indicated the stranding to have successfully breached the inner bottom shell. 展开更多
关键词 Bottom raking Ship STRANDING Finite element analysis CRASHWORTHINESS criteria PROGRESSIVE structural failure
下载PDF
Impact of Crash Environments on Crashworthiness of Fuselage Section 被引量:2
20
作者 TANG Huan ZHU Shuhua +1 位作者 LIU Xiaochuan XI Xulong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第S01期1-8,共8页
In order to study the crash resistance of the civil aircraft structure in different crash environments,two environmental models of soft soil and water are established to analyze the dynamic response of the fuselage se... In order to study the crash resistance of the civil aircraft structure in different crash environments,two environmental models of soft soil and water are established to analyze the dynamic response of the fuselage section subjected to the vertical at the impact velocity of 7 m/s.Simulation results show that the soft crash environment can have a certain cushioning effect on the structure crash,but it will prolong the crash time and change the energy absorption mode.This work suggests that soft environment may not be suitable for forced landing. 展开更多
关键词 CRASHWORTHINESS dynamic response fuselage section soft soil WATER
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部