Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. Anumber of researchers have investigated experimentally and numerically the improvement parametersof soils using dynamic comp...Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. Anumber of researchers have investigated experimentally and numerically the improvement parametersof soils using dynamic compaction, such as crater depth, improvement depth, and radial improvement,however, these parameters are not studied for improvement adjacent to the slopes or trenches. In thisresearch, four different slopes with different inclinations are modeled numerically using the finiteelement code ABAQUS, and impact loads of dynamic compaction are applied. The static factors of safetyare kept similar for all trenches and determined numerically by application of gravity loads to the slopeusing strength reduction method (SRM). The analysis focuses on crater depth and improvement regionwhich are compared to the state of flat ground. It can be observed that compacted area adjacent to theslopes is narrower and slightly away from the slope compared to the flat state. Moreover, crater depthincreases with increase in slope inclination.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
文摘Dynamic compaction is a cost-effective method commonly used for improvement of sandy soils. Anumber of researchers have investigated experimentally and numerically the improvement parametersof soils using dynamic compaction, such as crater depth, improvement depth, and radial improvement,however, these parameters are not studied for improvement adjacent to the slopes or trenches. In thisresearch, four different slopes with different inclinations are modeled numerically using the finiteelement code ABAQUS, and impact loads of dynamic compaction are applied. The static factors of safetyare kept similar for all trenches and determined numerically by application of gravity loads to the slopeusing strength reduction method (SRM). The analysis focuses on crater depth and improvement regionwhich are compared to the state of flat ground. It can be observed that compacted area adjacent to theslopes is narrower and slightly away from the slope compared to the flat state. Moreover, crater depthincreases with increase in slope inclination.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.