In the present work,a state-based peridynamics with adaptive particle refinement is proposed to simulate water ice crater formation due to impact loads.A modified Drucker-Prager constitutive model was adopted to model...In the present work,a state-based peridynamics with adaptive particle refinement is proposed to simulate water ice crater formation due to impact loads.A modified Drucker-Prager constitutive model was adopted to model ice and was implemented in the state-based peridynamic equations to analyze the elastic-plastic deformation of ice.In simulations,we use the fracture toughness failure criterion in peridynamics to simulate the quasi-brittle failure of ice.An adaptive particle refinement method in peridynamics was proposed to improve computational efficiency.The results obtained using the peridynamic model were compared with the experiments in previous literatures.It was found that the peridynamic simulation results and the experiments matched well except for some minor differences discussed,and the state-based peridynamic model has shown the specific predictive capacity to capture the detailed crater features of the ice.展开更多
The six largest known impact craters of the last 250 Myr(≥70 km in diameter),which are capable of causing significant environmental damage,coincide with four times of recognized extinction events at 36(with 2 craters...The six largest known impact craters of the last 250 Myr(≥70 km in diameter),which are capable of causing significant environmental damage,coincide with four times of recognized extinction events at 36(with 2 craters),66,and 145 Myr ago,and possibly with two provisional extinction events at 168 and215 Myr ago.These impact cratering events are accompanied by layers in the geologic record interpreted as impact ejecta.Chance occurrences of impacts and extinctions can be rejected at confidence levels of99.96%(for 4 impact/extinctions)to 99.99%(for 6 impact/extinctions).These results argue that several extinction events over the last 250 Myr may be related to the effects of large-body impacts.展开更多
Recent attention has been put into recurring slope lineae (RSL), after the discovery that water is present in them. It is assumed that RSL are due to flowing water. However, even though that might be the case, the gen...Recent attention has been put into recurring slope lineae (RSL), after the discovery that water is present in them. It is assumed that RSL are due to flowing water. However, even though that might be the case, the general characteristics of RSL as well as their seasonal and spatial distribution in Mars, and their occurrence within craters, suggest that RSL correspond to the weathering of frozen aquifers, which coincides with slope stability processes occurring in impact craters and scree slopes from Earth. In this study, we associated RSL with similar weathering processes occurring on impact craters and hydrogeological processes occurring on Earth (including ice, water, and wind erosion and natural aquifer recharge processes). We were able to create a conceptual model on how RSL develop, why are they found mostly in mid latitudes around craters, why are they present in more frequency in one side of crates in high latitudes, and why are there more RSL in the Martian southern hemisphere. Considering the whole hydrogeological processes occurring in craters that experience RSL, we were able to predict where large quantities of liquid water are most likely to be present in the red planet.展开更多
Chang’E-4(CE-4)successfully landed on the floor of the Von Kármán crater within the South Pole-Aitken basin(SPA).One of its scientific objectives is to determine the subsurface structure and the thickness o...Chang’E-4(CE-4)successfully landed on the floor of the Von Kármán crater within the South Pole-Aitken basin(SPA).One of its scientific objectives is to determine the subsurface structure and the thickness of lunar regolith at the landing site and along the traverse route of the Yutu-2 rover.Using orbital data,we employed small craters(diameters<1 km)on the floor of the Von Kármán crater as probes to investigate the subsurface structure and stratigraphy of the CE-4 landing site.In this study,40 dark-haloed craters that penetrate through the surface Finsen ejecta and excavate underlying mare deposits were identified,and 77 bright ray craters that expose only the underlying fresh materials but do not penetrate through the surface Finsen ejecta were found.The excavation depths of these craters and their distances from the Finsen crater center were calculated,and the thickness distribution of Finsen ejecta on the Von Kármán floor was systematically investigated.The boundary between Finsen ejecta and underlying mare basalt at the CE-4 landing site is constrained to a depth of 18 m.We have proposed the stratigraphy for the CE-4 site and interpreted the origins of different layers and the geological history of the Von Kármán crater.These results provide valuable geological background for interpreting data from the Lunar Penetrating Radar(LPR)and Visible and Near-infrared Imaging Spectrometer(VNIS)on the Yutu-2 rover.The CE-4 landing site could provide a reference point for crater ejecta distribution and mixing with local materials,to test and improve ejecta thickness models according to the in situ measurements of the CE-4 LPR.展开更多
The ever-increasing recovery rate of natural resources from terrestrial impact craters over the last fewdecades across the globe offers new avenues for further exploration of mineral and hydrocarbon resources in such ...The ever-increasing recovery rate of natural resources from terrestrial impact craters over the last fewdecades across the globe offers new avenues for further exploration of mineral and hydrocarbon resources in such settings.As of today,60 of the 208 terrestrial craters have been identified to host diverseresources such as hydrocarbons,metals and construction materials.The potential of craters as plausibleresource contributors to the energy sector is therefore,worthy of consideration,as 42(70%)of the 60craters host energy resources such as oil,gas,coal,uranium,mercury,critical and major minerals as wellas hydropower resources.Among others,19 craters are of well-developed hydrocarbon reserves.Mineraldeposits associated with craters are also classified similar to other mineral resources such as progenetic,syngenetic and epigenetic sources.Of these,the progenetic and syngenetic mineralization are confinedto the early and late excavation stage of impact crater evolution,respectively,whereas epigenetic deposits are formed during and after the modification stage of crater formation.Thus,progenetic andsyngenetic mineral deposits(like Fe,Ni,Pb,Zn and Cu)associated with craters are formed as a directresult of the impact event,whereas epigenetic deposits(e.g.hydrocarbon)are hosted by the impactstructure and result from post-impact processes.In the progenetic and syngenetic deposits,the shockwave induced fracturing and melting aid the formation of deposits,whereas in the epigenetic deposits,the highly fractured lithostratigraphic units of higher porosity and permeability,like the centralelevated area(CEA)or the rim,act as traps.In this review,we provide a holistic view of the mineral andenergy resources associated with impact craters,and use some of the remote sensing techniques toidentify the mineral deposits as supplemented by a schematic model of the types of deposits formedduring cratering process.展开更多
The spatiotemporal evolution of lunar impact craters is crucial for investigating lunar interior structure,internal and external dynamic processes,and interplanetary impact history.Advances in lunar crater identificat...The spatiotemporal evolution of lunar impact craters is crucial for investigating lunar interior structure,internal and external dynamic processes,and interplanetary impact history.Advances in lunar crater identification are reviewed based on topography and gravity data,and the features and mechanisms of topographic or buried craters are analyzed regarding morphology,gravity anomalies,gravity gradients,and the underlying crust-mantle interface relief.Based on the compiled crater catalog,the early lunar impact flux and thermal evolution are further discussed according to the basin ages and their interior structures.For some ancient impact basins,the crater size-frequency distribution measurements revealed age discrepancies from previous studies,suggesting that the lunar late heavy bombardment event started at~3.95 Ga.The degraded bulge structures of the crust-mantle interface beneath mare basins reveal that these basins formed on the lunar crust surface under high-temperature conditions and underwent prolonged relaxation compared to highland basins.Finally,we reveal that the up-to-date identification of lunar buried craters remains inaccurate and incomplete,preventing us from accurately reconstructing lunar and interplanetary impact histories.Therefore,we propose that a gravity model constructed using localized orthogonal basis functions can be useful for identifying lunar craters.展开更多
The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data o...The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data originating from Change'E-1 CCD stereo camera, three automatic extraction methods for the impact craters are implemented in two research areas: direct extraction from flooded DEM data (the Flooded method), object-oriented extraction from DEM data by using ENVI ZOOM function (the Object-Oriented method) and novel object-oriented extraction from flooded DEM data (the Flooded Object-Oriented method). Accuracy assessment, extracted degree computation, cumulative frequency analysis, shape and age analysis of the extracted craters combined display the following results. (1) The Flooded Object-Oriented method yields better accuracy than the other two methods in the two research areas; the extraction result of the Flooded method offers the similar accuracy to that of the Object-Oriented method. (2) The cumulative frequency curves for the extracted craters and the confirmed craters share a simi- lar change trajectory. (3) The number of the impact craters extracted by the three methods in the Imbrian period is the largest and is of various types; as to their age earlier than lmbrain, it is difficult to extract because they could have been destroyed.展开更多
On airless bodies such as the Moon and Mercury, secondary craters on the continuous secondaries facies of fresh craters mostly occur in chains and clusters. They have very irregular shapes. Secondaries on the continuo...On airless bodies such as the Moon and Mercury, secondary craters on the continuous secondaries facies of fresh craters mostly occur in chains and clusters. They have very irregular shapes. Secondaries on the continuous secondaries facies of some Martian and Mercurian craters are more isolated from each other in distribution and are more circular in shape, probably due to the effect of target properties on the impact excavation process. This paper studies secondaries on the continuous secondaries facies of all fresh lunar complex craters using recently-obtained high resolution images. After a global search, we find that 3 impact craters and basins on the Moon have circular and isolated secondaries on the continuous secondaries facies similar to those on Mercury: the Orientale basin, the Antoniadi crater, and the Compton crater. The morphological differences between such special secondaries and typical lunar secondaries are quantitatively compared and analyzed. Our preliminary analyses suggest that the special secondaries were probably caused by high temperature gradients within the local targets when these craters and basins formed. The high-temperature of the targets could have affected the impact excavation process by causing higher ejection angles, giving rise to more scattered circular secondaries.展开更多
There are small pit chains in the floor of lunar Copernican craters. They are usually so small in scale that there are few lunar spacecrafts to detect their detailed morphology. Combining camera data from Lunar Orbite...There are small pit chains in the floor of lunar Copernican craters. They are usually so small in scale that there are few lunar spacecrafts to detect their detailed morphology. Combining camera data from Lunar Orbiter, Lunar Reconnaissance Orbiter (LRO), Kaguya and Chang’e-1 missions, 5 representative large Copernican craters on various terrains of the lunar surface are chosen to study the origin of the pit chains in the crater floor. The morphology and distribution characteristic of the pit chains are referred by the high resolution images in this research. It is suggested that it is the magma activities from the subsurface magma layer combining with the existence of fractures and faults under the crater floor that leaded the formation of the pit chains. The model is further verified and discussed using the regolith thickness data in the crater floor. Our model suggests that the pit chains are still developing in the floor of the Copernican craters and the Moon may not be totally cold. Finally, the model limitation and potential future work are discussed based on available data.展开更多
Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater ...Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ≥ 10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.展开更多
In the northern part of the Ordos Basin, there is a 325 km long arc-shaped Langshan uplift and a 15 km-deep Linhe Trench in front of Langshan, which are rare geological phenomena for which origins no one has explained...In the northern part of the Ordos Basin, there is a 325 km long arc-shaped Langshan uplift and a 15 km-deep Linhe Trench in front of Langshan, which are rare geological phenomena for which origins no one has explained. This article comprehensively analyzes the research achievements over the past 40 years of geology, geomorphology, seismic exploration, paleogeography, and oil and gas exploration in the Ordos Basin and Langshan. It recognizes that the northern part of the Ordos Basin experienced a meteorite impact in the Late Cretaceous period. The impact pushed the block northwest ward, subducting after colliding with igneous rocks in the north. This sudden event formed a clear arc-shaped mountain zone in the north and a wedge-shaped trench in front of the mountain. The chaotic layers, prolonged and continuous faults, and numerous thrust layers in the Langshan, a negative anomaly area in the center of the northern Ordos, abnormal orientation of crystalline basement structures in the north of Ordos, Moho uplift, and distribution of meteorite fragments in the northwest of Langshan, all of these geological phenomena support the occurrence of the meteorite impact event, forming the arc-shaped Langshan and the Trench.展开更多
After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical ...After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.展开更多
Depleted shergottites record unique information about the primary composition and differentiation of the mantle of Mars.Their petrology,geochemistry,and cosmic ray exposure and crystallization ages suggest that most o...Depleted shergottites record unique information about the primary composition and differentiation of the mantle of Mars.Their petrology,geochemistry,and cosmic ray exposure and crystallization ages suggest that most of them were excavated by a single young impact in the Amazonian-aged lava flows of the Tharsis and Elysium volcanic provinces.However,the difficulties of deriving consistent model ages for individual craters and inadequate evaluation of 3-7 km craters capable of ejecting martian meteorites have not been settled.Here we perform detailed geological investigations and crater statistics in patches of impact melt deposits for potential source craters of depleted shergottites with D>3 km,especially those in the Tharsis and Elysium volcanic provinces.By excluding the effect of heterogeneous textures across ejecta deposits,which hinder straightforward extraction of superposed production populations,our systematically updated model ages reveal that Chakpar crater at the northern flank of Ascraeus Mons is the best-fit candidate.The local context of this crater permits establishing a link between the meteorites and specific lava flows.The long-lived volcanic center here may experience an eruption and/or local deposition hiatus for about 1.8 billion years,and abundant subsurface water existed when the impact occurred at about 1.1 million years.展开更多
Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physi...Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model.展开更多
The micro-ablation processes and morphological evolution of ablative craters on single-crystal magnesium under subpicosecond laser irradiation are investigated using molecular dynamics(MD) simulations and experiments....The micro-ablation processes and morphological evolution of ablative craters on single-crystal magnesium under subpicosecond laser irradiation are investigated using molecular dynamics(MD) simulations and experiments.The simulation results exhibit that the main failure mode of single-crystal Mg film irradiated by a low fluence and long pulse width laser is the ejection of surface atoms,which has laser-induced high stress.However,under high fluence and short pulse width laser irradiation,the main damage mechanism is nucleation fracture caused by stress wave reflection and superposition at the bottom of the film.In addition,Mg[0001] has higher pressure sensitivity and is more prone to ablation than Mg[0001].The evolution equation of crater depth is established using multi-pulse laser ablation simulation and verified by experiments.The results show that,under multiple pulsed laser irradiation,not only does the crater depth increase linearly with the pulse number,but also the quadratic term and constant term of the fitted crater profile curve increase linearly.展开更多
The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on...The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.展开更多
The Chang’E-4 mission has been exploring the lunar farside.Two scientific targets of the rover onboard are(1)resolving the possible mineralogy related to the South Pole-Aitken basin and(2)understanding the subsurface...The Chang’E-4 mission has been exploring the lunar farside.Two scientific targets of the rover onboard are(1)resolving the possible mineralogy related to the South Pole-Aitken basin and(2)understanding the subsurface processes at the lunar farside.Publications to date that are based on the reflectance spectra and radar data obtained by the rover have shown a persistent inconsistency about the local stratigraphy.To explain both the abnormal surface topography at the landing site and the unexpected radargram observed by the rover,the Alder crater has been frequently reported to be older than the mare basalts at that landing site.However,this argument is not supported by earlier geological mapping nor recent crater statistics.Resolving this controversy is critical for a full understanding of the geological history of the landing area and for correct interpretations of the scientific data returned.Employing detailed crater statistics,rigorous statistical analyses,and an updated crater chronology function,this study is determined to resolve the relative ages of the Alder crater,Finsen crater,and the mare basalts on the floor of Von Kármán.Our results reveal that while background secondaries and local resurfacing have widely occurred in the study area,affecting age determinations,the statistics are significant enough to conclude that the Alder crater is the oldest among the three targets.This independent constraint is consistent with both the crosscutting relationships of different terrains in this area and global stratigraphic mapping.Our results exclude Alder as a possible contributor of the post-mare deposits at the landing site,appealing for a more systematic stratigraphy study to resolve the provenances of these deposits.展开更多
The prototype for investigations of formation mechanisms and related geological effects of large impact basins on planetary bodies has been the Orientale basin on the Moon.Its widespread secondaries,light plains,and n...The prototype for investigations of formation mechanisms and related geological effects of large impact basins on planetary bodies has been the Orientale basin on the Moon.Its widespread secondaries,light plains,and near-rim melt flows have been well mapped in previous studies.Flow features are also widely associated with secondaries on planetary bodies,but their physical properties are not well constrained.The nature of flow features associated with large impact basins are critically important to understand the emplacement process of basin ejecta,which is one of the most fundamental processes in shaping the shallow crusts of planetary bodies.Here we use multisource remote sensing data to constrain the physical properties of flow features formed by the secondaries of the Orientale basin.The results suggest that such flows are dominated by centimeter-scale fine debris fines;larger boulders are not abundant.The shattering of target materials during the excavation of the Orientale basin,landing impact of ejecta that formed the secondaries,and grain comminution within the flows have substantially reduced particle sizes,forming the fine flows.The discovery of global-wide fine debris flows formed by large impact basins has profound implications to the interpretation of both previously-returned samples and remote sensing data.展开更多
In southern Tibet, there is a series of lakes in the region (82°30'E, 29°N and 90°30'E, 33°N). This study indicates that these lakes were formed by the impact of a single disint...In southern Tibet, there is a series of lakes in the region (82°30'E, 29°N and 90°30'E, 33°N). This study indicates that these lakes were formed by the impact of a single disintegrating comet that hit the region. Observation indicates that the lakes are unusually closely aligned and have a steep slope facing circular feature on the eastern side. Fractures and faults connecting these lakes can be observed over entire subject site hinting towards the multiple impact craters. The terrain is uneven and lakes are partially filled hence in some cases do not look like circular or elliptical. These lakes vary from 1 Km to 65 Km in diameter and are linearly aligned around a single line. Studies of deuterium by Yuan et al. (2011) [1] indicate an abrupt 4‰ increase in δ18O in middle Holocene period around 6000 years ago. The study indicates that the region is rich in diamond, Coesite, Platinum Group Elements (PGE), Stishovite, tektites, and other complex alloys, as would be expected from a high energy impact of an extraterrestrial object. The possibility of the impact as one of the reasons for the diamond in this region was also suggested by Wen-Ji Bai and Qing-Song Fang (2007) [2]. However in absence of definitive evidence they favoured mantle origin. Two possible reasons of absence of impact signature are source of sample and impact pattern. First is the source of the sample which is collected from the river beds of Yarlung-Zangbo Suture Zone of Tibet which is believed to be the origin of this diamond, however it ignores the fact that these rivers get water from lakes which are in the proposed impact zone and the second reason is the impact-pattern spread over close to 800 km which is not expected from the asteroid impact. It will therefore be prudent to test samples from the lake region to understand surface distortion features to confirm the impact. Based on satellite imagery major industrial development supported by road infrastructure in the subject region near lakes and rivers originating from these lakes can be observed hinting towards placer mining activity associated with lakes (craters). Our study suggests that the diamonds, Platinum Group Elements, Stishovite and other alloys harvested from the region should be considered as comet impact diamonds rather than those created in the interior of the earth.展开更多
In the terrestrial planet zone, Comets start outgassing due to solar radiation. This can make comet composition fragile enough to break under the gravitational gradient. Examples like those of Comet Shoemaker-Levy 9 [...In the terrestrial planet zone, Comets start outgassing due to solar radiation. This can make comet composition fragile enough to break under the gravitational gradient. Examples like those of Comet Shoemaker-Levy 9 [1] show that it is not unusual for comets to disintegrate due to gravitational gradients. In the event of an impact of such a disintegrated comet on earth, multiple coherent impact craters will be distributed over a large area. The low-density porous composition of the comet will result in the formation of “large flat-floored craters” spread over a large area with a network of faults and fractures as described by Roddy and co-workers (Roddy, 1976;Roddy et al., 1977) [2] [3]. Due to its unusual appearance these impacts patterns are different than rock/metal asteroid impact craters. As a result, these sites are difficult to identify. There are multiple such sites on the planet earth which are under study for impact but due to complex nature of comet impact craters, they have been a conundrum for some time. One such possible site matching the comet impact features can be observed in the southern Tibet between the latitudes of 82°30'E and 90°30'E and 29°N and 33°N. This study indicates that the lakes in this region were formed by the impact of a single disintegrating comet that hit the region. Observation indicates that the lakes are unusually closely aligned and have a steep slope facing circular feature on the eastern side. Fractures and faults connecting these lakes can be observed over entire subject site hinting towards the multiple impact craters. These craters are large flat-floored and spread over a large area. Gravitational anomaly in the lake region along with the presence of Ultra High Pressure (UHP) minerals like cubic Born Nitride, micro-diamond with the inclusion of Platinum Group Elements (PGE), coesite, Stishovite, osbornite and other complex finds in the region support the possibility of impact.展开更多
文摘In the present work,a state-based peridynamics with adaptive particle refinement is proposed to simulate water ice crater formation due to impact loads.A modified Drucker-Prager constitutive model was adopted to model ice and was implemented in the state-based peridynamic equations to analyze the elastic-plastic deformation of ice.In simulations,we use the fracture toughness failure criterion in peridynamics to simulate the quasi-brittle failure of ice.An adaptive particle refinement method in peridynamics was proposed to improve computational efficiency.The results obtained using the peridynamic model were compared with the experiments in previous literatures.It was found that the peridynamic simulation results and the experiments matched well except for some minor differences discussed,and the state-based peridynamic model has shown the specific predictive capacity to capture the detailed crater features of the ice.
基金Support for Rampino came from an NYU Research Challenge grant
文摘The six largest known impact craters of the last 250 Myr(≥70 km in diameter),which are capable of causing significant environmental damage,coincide with four times of recognized extinction events at 36(with 2 craters),66,and 145 Myr ago,and possibly with two provisional extinction events at 168 and215 Myr ago.These impact cratering events are accompanied by layers in the geologic record interpreted as impact ejecta.Chance occurrences of impacts and extinctions can be rejected at confidence levels of99.96%(for 4 impact/extinctions)to 99.99%(for 6 impact/extinctions).These results argue that several extinction events over the last 250 Myr may be related to the effects of large-body impacts.
文摘Recent attention has been put into recurring slope lineae (RSL), after the discovery that water is present in them. It is assumed that RSL are due to flowing water. However, even though that might be the case, the general characteristics of RSL as well as their seasonal and spatial distribution in Mars, and their occurrence within craters, suggest that RSL correspond to the weathering of frozen aquifers, which coincides with slope stability processes occurring in impact craters and scree slopes from Earth. In this study, we associated RSL with similar weathering processes occurring on impact craters and hydrogeological processes occurring on Earth (including ice, water, and wind erosion and natural aquifer recharge processes). We were able to create a conceptual model on how RSL develop, why are they found mostly in mid latitudes around craters, why are they present in more frequency in one side of crates in high latitudes, and why are there more RSL in the Martian southern hemisphere. Considering the whole hydrogeological processes occurring in craters that experience RSL, we were able to predict where large quantities of liquid water are most likely to be present in the red planet.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41490633 and 41590851)the open fund of the State Key Laboratory of Lunar and Planetary Sciences (Macao University of Science and Technology) (Macao FDCT Grant No. 119/2017/A3)+6 种基金the open fund of the Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciencessupported by the National Natural Science Foundation of China (U1931211, 41972322 and 11941001)the Natural Science Foundation of Shandong Province (ZR2019MD008)Qilu (Tang) Young Scholars Program of Shandong University, Weihai (2015WHWLJH14)supported by the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-26)the Focus on Research and Development Plan in Shandong Province (2018GGX101028)the Shandong Provincial Natural Science Foundation (ZR2019MD015)
文摘Chang’E-4(CE-4)successfully landed on the floor of the Von Kármán crater within the South Pole-Aitken basin(SPA).One of its scientific objectives is to determine the subsurface structure and the thickness of lunar regolith at the landing site and along the traverse route of the Yutu-2 rover.Using orbital data,we employed small craters(diameters<1 km)on the floor of the Von Kármán crater as probes to investigate the subsurface structure and stratigraphy of the CE-4 landing site.In this study,40 dark-haloed craters that penetrate through the surface Finsen ejecta and excavate underlying mare deposits were identified,and 77 bright ray craters that expose only the underlying fresh materials but do not penetrate through the surface Finsen ejecta were found.The excavation depths of these craters and their distances from the Finsen crater center were calculated,and the thickness distribution of Finsen ejecta on the Von Kármán floor was systematically investigated.The boundary between Finsen ejecta and underlying mare basalt at the CE-4 landing site is constrained to a depth of 18 m.We have proposed the stratigraphy for the CE-4 site and interpreted the origins of different layers and the geological history of the Von Kármán crater.These results provide valuable geological background for interpreting data from the Lunar Penetrating Radar(LPR)and Visible and Near-infrared Imaging Spectrometer(VNIS)on the Yutu-2 rover.The CE-4 landing site could provide a reference point for crater ejecta distribution and mixing with local materials,to test and improve ejecta thickness models according to the in situ measurements of the CE-4 LPR.
文摘The ever-increasing recovery rate of natural resources from terrestrial impact craters over the last fewdecades across the globe offers new avenues for further exploration of mineral and hydrocarbon resources in such settings.As of today,60 of the 208 terrestrial craters have been identified to host diverseresources such as hydrocarbons,metals and construction materials.The potential of craters as plausibleresource contributors to the energy sector is therefore,worthy of consideration,as 42(70%)of the 60craters host energy resources such as oil,gas,coal,uranium,mercury,critical and major minerals as wellas hydropower resources.Among others,19 craters are of well-developed hydrocarbon reserves.Mineraldeposits associated with craters are also classified similar to other mineral resources such as progenetic,syngenetic and epigenetic sources.Of these,the progenetic and syngenetic mineralization are confinedto the early and late excavation stage of impact crater evolution,respectively,whereas epigenetic deposits are formed during and after the modification stage of crater formation.Thus,progenetic andsyngenetic mineral deposits(like Fe,Ni,Pb,Zn and Cu)associated with craters are formed as a directresult of the impact event,whereas epigenetic deposits(e.g.hydrocarbon)are hosted by the impactstructure and result from post-impact processes.In the progenetic and syngenetic deposits,the shockwave induced fracturing and melting aid the formation of deposits,whereas in the epigenetic deposits,the highly fractured lithostratigraphic units of higher porosity and permeability,like the centralelevated area(CEA)or the rim,act as traps.In this review,we provide a holistic view of the mineral andenergy resources associated with impact craters,and use some of the remote sensing techniques toidentify the mineral deposits as supplemented by a schematic model of the types of deposits formedduring cratering process.
基金supported by the Institute of Geology and Geophysics,Chinese Academy of Sciences(Grant Nos.IGGCAS202102,IGGCAS-201904)the National Natural Science Foundation of China(Grant Nos.42288201,41704080,42274114)the National Key Research and Development Program of China(Grant No.2022YFF0503200)。
文摘The spatiotemporal evolution of lunar impact craters is crucial for investigating lunar interior structure,internal and external dynamic processes,and interplanetary impact history.Advances in lunar crater identification are reviewed based on topography and gravity data,and the features and mechanisms of topographic or buried craters are analyzed regarding morphology,gravity anomalies,gravity gradients,and the underlying crust-mantle interface relief.Based on the compiled crater catalog,the early lunar impact flux and thermal evolution are further discussed according to the basin ages and their interior structures.For some ancient impact basins,the crater size-frequency distribution measurements revealed age discrepancies from previous studies,suggesting that the lunar late heavy bombardment event started at~3.95 Ga.The degraded bulge structures of the crust-mantle interface beneath mare basins reveal that these basins formed on the lunar crust surface under high-temperature conditions and underwent prolonged relaxation compared to highland basins.Finally,we reveal that the up-to-date identification of lunar buried craters remains inaccurate and incomplete,preventing us from accurately reconstructing lunar and interplanetary impact histories.Therefore,we propose that a gravity model constructed using localized orthogonal basis functions can be useful for identifying lunar craters.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40871177 and 41171332)the Knowledge Innovation Project of the Institute of Geographic and Natural Resources Research, the Chinese Academy of Sci-ences (Grant No. 201001005)
文摘The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data originating from Change'E-1 CCD stereo camera, three automatic extraction methods for the impact craters are implemented in two research areas: direct extraction from flooded DEM data (the Flooded method), object-oriented extraction from DEM data by using ENVI ZOOM function (the Object-Oriented method) and novel object-oriented extraction from flooded DEM data (the Flooded Object-Oriented method). Accuracy assessment, extracted degree computation, cumulative frequency analysis, shape and age analysis of the extracted craters combined display the following results. (1) The Flooded Object-Oriented method yields better accuracy than the other two methods in the two research areas; the extraction result of the Flooded method offers the similar accuracy to that of the Object-Oriented method. (2) The cumulative frequency curves for the extracted craters and the confirmed craters share a simi- lar change trajectory. (3) The number of the impact craters extracted by the three methods in the Imbrian period is the largest and is of various types; as to their age earlier than lmbrain, it is difficult to extract because they could have been destroyed.
基金supported by National Natural Science Foundation of China (Nos. 41403053, J1210043)fund CUG130106 of China University of Geosciences (Wuhan)
文摘On airless bodies such as the Moon and Mercury, secondary craters on the continuous secondaries facies of fresh craters mostly occur in chains and clusters. They have very irregular shapes. Secondaries on the continuous secondaries facies of some Martian and Mercurian craters are more isolated from each other in distribution and are more circular in shape, probably due to the effect of target properties on the impact excavation process. This paper studies secondaries on the continuous secondaries facies of all fresh lunar complex craters using recently-obtained high resolution images. After a global search, we find that 3 impact craters and basins on the Moon have circular and isolated secondaries on the continuous secondaries facies similar to those on Mercury: the Orientale basin, the Antoniadi crater, and the Compton crater. The morphological differences between such special secondaries and typical lunar secondaries are quantitatively compared and analyzed. Our preliminary analyses suggest that the special secondaries were probably caused by high temperature gradients within the local targets when these craters and basins formed. The high-temperature of the targets could have affected the impact excavation process by causing higher ejection angles, giving rise to more scattered circular secondaries.
文摘There are small pit chains in the floor of lunar Copernican craters. They are usually so small in scale that there are few lunar spacecrafts to detect their detailed morphology. Combining camera data from Lunar Orbiter, Lunar Reconnaissance Orbiter (LRO), Kaguya and Chang’e-1 missions, 5 representative large Copernican craters on various terrains of the lunar surface are chosen to study the origin of the pit chains in the crater floor. The morphology and distribution characteristic of the pit chains are referred by the high resolution images in this research. It is suggested that it is the magma activities from the subsurface magma layer combining with the existence of fractures and faults under the crater floor that leaded the formation of the pit chains. The model is further verified and discussed using the regolith thickness data in the crater floor. Our model suggests that the pit chains are still developing in the floor of the Copernican craters and the Moon may not be totally cold. Finally, the model limitation and potential future work are discussed based on available data.
文摘Craters, one of the most significant features of the lunar surface, have been widely researched because they offer us the relative age of the surface unit as well as crucial geological information. Research on crater detec- tion algorithms (CDAs) of the Moon and other planetary bodies has concentrated on detecting them from imagery data, but the computational cost of detecting large craters using images makes these CDAs impractical. This paper presents a new approach to crater detection that utilizes a digital elevation model instead of images; this enables fully automatic global detection of large craters. Craters were delineated by terrain attributes, and then thresholding maps of terrain attributes were used to transform topographic data into a binary image, finally craters were detected by using the Hough Transform from the binary image. By using the proposed algorithm, we produced a catalog of all craters ≥ 10 km in diameter on the lunar surface and analyzed their distribution and population characteristics.
文摘In the northern part of the Ordos Basin, there is a 325 km long arc-shaped Langshan uplift and a 15 km-deep Linhe Trench in front of Langshan, which are rare geological phenomena for which origins no one has explained. This article comprehensively analyzes the research achievements over the past 40 years of geology, geomorphology, seismic exploration, paleogeography, and oil and gas exploration in the Ordos Basin and Langshan. It recognizes that the northern part of the Ordos Basin experienced a meteorite impact in the Late Cretaceous period. The impact pushed the block northwest ward, subducting after colliding with igneous rocks in the north. This sudden event formed a clear arc-shaped mountain zone in the north and a wedge-shaped trench in front of the mountain. The chaotic layers, prolonged and continuous faults, and numerous thrust layers in the Langshan, a negative anomaly area in the center of the northern Ordos, abnormal orientation of crystalline basement structures in the north of Ordos, Moho uplift, and distribution of meteorite fragments in the northwest of Langshan, all of these geological phenomena support the occurrence of the meteorite impact event, forming the arc-shaped Langshan and the Trench.
基金supported by the Key Research Program of the Institute of Geology and Geophysics,CAS(Nos.IGGCAS-202102 and IGGCAS-201904)the National Natural Science Foundation of China(No.42230111)the CAS Key Technology Talent Program。
文摘After landing in the Utopia Planitia,Tianwen-1 formed the deepest landing crater on Mars,approximately 40 cm deep,exposing precious information about the mechanical properties of Martian soil.We established numerical models for the plume-surface interaction(PSI)and the crater formation based on Computational Fluid Dynamics(CFD)methods and the erosion model modified from Roberts’Theory.Comparative studies of cases were conducted with different nozzle heights and soil mechanical properties.The increase in cohesion and internal friction angle leads to a decrease in erosion rate and maximum crater depth,with the cohesion having a greater impact.The influence of the nozzle height is not clear,as it interacts with the position of the Shock Diamond to jointly control the erosion process.Furthermore,we categorized the evolution of landing craters into the dispersive and the concentrated erosion modes based on the morphological characteristics.Finally,we estimated the upper limits of the Martian soil’s mechanical properties near Tianwen-1 landing site,with the cohesion ranging from 2612 to 2042 Pa and internal friction angle from 25°to 41°.
基金funded by the National Natural Science Foundation of China(Grant Nos.42241108,423B2205,42273040,62227901)the Strategic Priority Research Program of Chinese Academy of Science(Grant No.XDB41000000)。
文摘Depleted shergottites record unique information about the primary composition and differentiation of the mantle of Mars.Their petrology,geochemistry,and cosmic ray exposure and crystallization ages suggest that most of them were excavated by a single young impact in the Amazonian-aged lava flows of the Tharsis and Elysium volcanic provinces.However,the difficulties of deriving consistent model ages for individual craters and inadequate evaluation of 3-7 km craters capable of ejecting martian meteorites have not been settled.Here we perform detailed geological investigations and crater statistics in patches of impact melt deposits for potential source craters of depleted shergottites with D>3 km,especially those in the Tharsis and Elysium volcanic provinces.By excluding the effect of heterogeneous textures across ejecta deposits,which hinder straightforward extraction of superposed production populations,our systematically updated model ages reveal that Chakpar crater at the northern flank of Ascraeus Mons is the best-fit candidate.The local context of this crater permits establishing a link between the meteorites and specific lava flows.The long-lived volcanic center here may experience an eruption and/or local deposition hiatus for about 1.8 billion years,and abundant subsurface water existed when the impact occurred at about 1.1 million years.
基金support from the Department of Science and Technology (DST),Government of India (Grant No.ECR/DST/2017/000918)the Indian Institute of Technology Ropar for providing financial support under an ISIRD grant (F.No.9-282/2017IITRPR/705).
文摘Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model.
文摘The micro-ablation processes and morphological evolution of ablative craters on single-crystal magnesium under subpicosecond laser irradiation are investigated using molecular dynamics(MD) simulations and experiments.The simulation results exhibit that the main failure mode of single-crystal Mg film irradiated by a low fluence and long pulse width laser is the ejection of surface atoms,which has laser-induced high stress.However,under high fluence and short pulse width laser irradiation,the main damage mechanism is nucleation fracture caused by stress wave reflection and superposition at the bottom of the film.In addition,Mg[0001] has higher pressure sensitivity and is more prone to ablation than Mg[0001].The evolution equation of crater depth is established using multi-pulse laser ablation simulation and verified by experiments.The results show that,under multiple pulsed laser irradiation,not only does the crater depth increase linearly with the pulse number,but also the quadratic term and constant term of the fitted crater profile curve increase linearly.
基金Supported by the National Natural Science Foundation of China(50635040)~~
文摘The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.
基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the Science and Technology Development Fund of Macao(0042/2018/A2)+1 种基金the National Natural Science Foundation of China(No.41773063)the pre-research Project on Civil Aerospace Technologies(No.D020201 and D020202)that is funded by Chinese National Space Administration.
文摘The Chang’E-4 mission has been exploring the lunar farside.Two scientific targets of the rover onboard are(1)resolving the possible mineralogy related to the South Pole-Aitken basin and(2)understanding the subsurface processes at the lunar farside.Publications to date that are based on the reflectance spectra and radar data obtained by the rover have shown a persistent inconsistency about the local stratigraphy.To explain both the abnormal surface topography at the landing site and the unexpected radargram observed by the rover,the Alder crater has been frequently reported to be older than the mare basalts at that landing site.However,this argument is not supported by earlier geological mapping nor recent crater statistics.Resolving this controversy is critical for a full understanding of the geological history of the landing area and for correct interpretations of the scientific data returned.Employing detailed crater statistics,rigorous statistical analyses,and an updated crater chronology function,this study is determined to resolve the relative ages of the Alder crater,Finsen crater,and the mare basalts on the floor of Von Kármán.Our results reveal that while background secondaries and local resurfacing have widely occurred in the study area,affecting age determinations,the statistics are significant enough to conclude that the Alder crater is the oldest among the three targets.This independent constraint is consistent with both the crosscutting relationships of different terrains in this area and global stratigraphic mapping.Our results exclude Alder as a possible contributor of the post-mare deposits at the landing site,appealing for a more systematic stratigraphy study to resolve the provenances of these deposits.
基金the B-type Strategic Priority Program of the Chinese Academy of Sciences,Grant No.XDB41000000the National Natural Science Foundation of China(41773063,41525015 and 41830214)+1 种基金the Science and Technology Development Fund of Macao(0042/2018/A2)the Pre-research Project on Civil Aerospace Technologies(No.D020101)of CNSA.
文摘The prototype for investigations of formation mechanisms and related geological effects of large impact basins on planetary bodies has been the Orientale basin on the Moon.Its widespread secondaries,light plains,and near-rim melt flows have been well mapped in previous studies.Flow features are also widely associated with secondaries on planetary bodies,but their physical properties are not well constrained.The nature of flow features associated with large impact basins are critically important to understand the emplacement process of basin ejecta,which is one of the most fundamental processes in shaping the shallow crusts of planetary bodies.Here we use multisource remote sensing data to constrain the physical properties of flow features formed by the secondaries of the Orientale basin.The results suggest that such flows are dominated by centimeter-scale fine debris fines;larger boulders are not abundant.The shattering of target materials during the excavation of the Orientale basin,landing impact of ejecta that formed the secondaries,and grain comminution within the flows have substantially reduced particle sizes,forming the fine flows.The discovery of global-wide fine debris flows formed by large impact basins has profound implications to the interpretation of both previously-returned samples and remote sensing data.
文摘In southern Tibet, there is a series of lakes in the region (82°30'E, 29°N and 90°30'E, 33°N). This study indicates that these lakes were formed by the impact of a single disintegrating comet that hit the region. Observation indicates that the lakes are unusually closely aligned and have a steep slope facing circular feature on the eastern side. Fractures and faults connecting these lakes can be observed over entire subject site hinting towards the multiple impact craters. The terrain is uneven and lakes are partially filled hence in some cases do not look like circular or elliptical. These lakes vary from 1 Km to 65 Km in diameter and are linearly aligned around a single line. Studies of deuterium by Yuan et al. (2011) [1] indicate an abrupt 4‰ increase in δ18O in middle Holocene period around 6000 years ago. The study indicates that the region is rich in diamond, Coesite, Platinum Group Elements (PGE), Stishovite, tektites, and other complex alloys, as would be expected from a high energy impact of an extraterrestrial object. The possibility of the impact as one of the reasons for the diamond in this region was also suggested by Wen-Ji Bai and Qing-Song Fang (2007) [2]. However in absence of definitive evidence they favoured mantle origin. Two possible reasons of absence of impact signature are source of sample and impact pattern. First is the source of the sample which is collected from the river beds of Yarlung-Zangbo Suture Zone of Tibet which is believed to be the origin of this diamond, however it ignores the fact that these rivers get water from lakes which are in the proposed impact zone and the second reason is the impact-pattern spread over close to 800 km which is not expected from the asteroid impact. It will therefore be prudent to test samples from the lake region to understand surface distortion features to confirm the impact. Based on satellite imagery major industrial development supported by road infrastructure in the subject region near lakes and rivers originating from these lakes can be observed hinting towards placer mining activity associated with lakes (craters). Our study suggests that the diamonds, Platinum Group Elements, Stishovite and other alloys harvested from the region should be considered as comet impact diamonds rather than those created in the interior of the earth.
文摘In the terrestrial planet zone, Comets start outgassing due to solar radiation. This can make comet composition fragile enough to break under the gravitational gradient. Examples like those of Comet Shoemaker-Levy 9 [1] show that it is not unusual for comets to disintegrate due to gravitational gradients. In the event of an impact of such a disintegrated comet on earth, multiple coherent impact craters will be distributed over a large area. The low-density porous composition of the comet will result in the formation of “large flat-floored craters” spread over a large area with a network of faults and fractures as described by Roddy and co-workers (Roddy, 1976;Roddy et al., 1977) [2] [3]. Due to its unusual appearance these impacts patterns are different than rock/metal asteroid impact craters. As a result, these sites are difficult to identify. There are multiple such sites on the planet earth which are under study for impact but due to complex nature of comet impact craters, they have been a conundrum for some time. One such possible site matching the comet impact features can be observed in the southern Tibet between the latitudes of 82°30'E and 90°30'E and 29°N and 33°N. This study indicates that the lakes in this region were formed by the impact of a single disintegrating comet that hit the region. Observation indicates that the lakes are unusually closely aligned and have a steep slope facing circular feature on the eastern side. Fractures and faults connecting these lakes can be observed over entire subject site hinting towards the multiple impact craters. These craters are large flat-floored and spread over a large area. Gravitational anomaly in the lake region along with the presence of Ultra High Pressure (UHP) minerals like cubic Born Nitride, micro-diamond with the inclusion of Platinum Group Elements (PGE), coesite, Stishovite, osbornite and other complex finds in the region support the possibility of impact.