针对数据集标签缺失且类别分布极不平衡的信用卡欺诈检测问题,提出一种基于动态集成选择算法的信用卡审批异常检测模型DES-HBOS(Dynamic Ensemble Selection based on Histogram-based Outlier Score)。首先,利用无监督异常检测算法构...针对数据集标签缺失且类别分布极不平衡的信用卡欺诈检测问题,提出一种基于动态集成选择算法的信用卡审批异常检测模型DES-HBOS(Dynamic Ensemble Selection based on Histogram-based Outlier Score)。首先,利用无监督异常检测算法构造训练集客户的伪标签;然后,确定待测客户能力区域,根据Pearson相关系数评估分类器性能;最后,选择一组较优的分类器对待测客户进行集成。在真实信用卡客户数据集上的实验表明,与其他6种经典异常检测模型相比,DES-HBOS的Recall更高,能将更多欺诈客户识别出来。在4个不平衡数据集上进行对比实验,实验结果表明与HBOS相比,DES-HBOS检测异常能力更强。展开更多
文摘针对数据集标签缺失且类别分布极不平衡的信用卡欺诈检测问题,提出一种基于动态集成选择算法的信用卡审批异常检测模型DES-HBOS(Dynamic Ensemble Selection based on Histogram-based Outlier Score)。首先,利用无监督异常检测算法构造训练集客户的伪标签;然后,确定待测客户能力区域,根据Pearson相关系数评估分类器性能;最后,选择一组较优的分类器对待测客户进行集成。在真实信用卡客户数据集上的实验表明,与其他6种经典异常检测模型相比,DES-HBOS的Recall更高,能将更多欺诈客户识别出来。在4个不平衡数据集上进行对比实验,实验结果表明与HBOS相比,DES-HBOS检测异常能力更强。