The creep performance of basalt fibre(BF)reinforced in asphalt mortar under uniaxial compressive loadings is investigated. The samples of basalt fibre asphalt mortar(BFAM) with different BF mass fractions(0. 1%,0...The creep performance of basalt fibre(BF)reinforced in asphalt mortar under uniaxial compressive loadings is investigated. The samples of basalt fibre asphalt mortar(BFAM) with different BF mass fractions(0. 1%,0. 2%, and 0. 5%) and without BF in asphalt mixture are prepared, and then submitted for the compressive strength test and corresponding creep test at a high in-service temperature.Besides, numerical simulations in finite element ABAQUS software were conducted to model the compressive creep test of mortar materials, where the internal structure of the fibre mortar was assumed to be a two-component composite material model such as fibre and mortar matrix. Finally, the influence factors of rheological behaviors of BFAM are further analyzed. Results indicate that compared to the control sample, the compressive strength of BFAM samples has a significant increase, and the creep and residual deformation are decreased. However, it also shows that the excessive fibre, i.e. with the BF content of 0. 5%, is unfavorable to the high-temperature stability of the mortar. Based on the analysis results, the prediction equations of parameters of the Burgers constitutive model for BFAM are proposed by considering the fibre factors.展开更多
The microstructure of nickel-based single-crystal(SC) superalloys has a pivotal influence on their creep properties. The addition of the Re element not only enhances the long-term creep properties of nickel-based SC s...The microstructure of nickel-based single-crystal(SC) superalloys has a pivotal influence on their creep properties. The addition of the Re element not only enhances the long-term creep properties of nickel-based SC superalloys, but also results in the formation of a topologically close-packed(TCP) phase which is a harmful and brittle hard phase. Here, high-temperature creep interruption tests of a nickel-based SC superalloy that contains4.8 wt% Re were performed under various temperatures and stress conditions, and the evolution of microstructure during creep was observed by scanning electron microscopy(SEM). The volume fraction of the TCP phase was also extracted to explore the mechanism that controls the impacts of the TCP phase on the creep properties.According to the microstructure evolution mechanism, the influence of the TCP phase was attributed to the initial damage and critical shear stress of the material. A creep performance prediction model for nickel-based SC superalloys considering the precipitation of the TCP phase that is based on the crystal plasticity theory and a modified creep damage model was established. The simulation curves fit well with the experimental results and the errors between prediction creep life with test results are within 5%.展开更多
Heat-resistant ferritic stainless steels are widely used in many high-temperature applications such as power plants,automotive exhaust manifolds and solid oxide fuel cell interconnects due to their low price,low coeff...Heat-resistant ferritic stainless steels are widely used in many high-temperature applications such as power plants,automotive exhaust manifolds and solid oxide fuel cell interconnects due to their low price,low coefficient of thermal expansion,high thermal conductivity,high thermal fatigue resistance,high creep performance and excellent corrosion resistance.High-temperature strength,formability,high-temperature oxidation resistance and creep performance are the main evaluation criteria for the application.With the development of relevant industries,higher requirements are proposed for the performance of ferritic stainless steels.Therefore,the development of a new generation of heat-resistant ferritic stainless steel has received extensive attention.In this presentation,we summarized the research progress of heat-resistant ferritic stainless steels including high-temperature strength,formability,high-temperature oxidation resistance and creep performance.Meanwhile,some suggestions are given for alloy composition design and microstructure optimization.The future research direction of heat-resistant ferritic stainless steels also prospected.展开更多
China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and m...China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.展开更多
基金The National Natural Science Foundation of China(No.51108082)
文摘The creep performance of basalt fibre(BF)reinforced in asphalt mortar under uniaxial compressive loadings is investigated. The samples of basalt fibre asphalt mortar(BFAM) with different BF mass fractions(0. 1%,0. 2%, and 0. 5%) and without BF in asphalt mixture are prepared, and then submitted for the compressive strength test and corresponding creep test at a high in-service temperature.Besides, numerical simulations in finite element ABAQUS software were conducted to model the compressive creep test of mortar materials, where the internal structure of the fibre mortar was assumed to be a two-component composite material model such as fibre and mortar matrix. Finally, the influence factors of rheological behaviors of BFAM are further analyzed. Results indicate that compared to the control sample, the compressive strength of BFAM samples has a significant increase, and the creep and residual deformation are decreased. However, it also shows that the excessive fibre, i.e. with the BF content of 0. 5%, is unfavorable to the high-temperature stability of the mortar. Based on the analysis results, the prediction equations of parameters of the Burgers constitutive model for BFAM are proposed by considering the fibre factors.
基金financially supported by the National Natural Science Foundation of China(No.51875462)the Fundamental Research Funds for the Central Universities(No.3102019PY001)+1 种基金the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(Nos.ZZ2019015 and ZZ2019017)the National Science and Technology Major Project(Nos.2017-IV-0003-0040 and 2017-V-00030052)。
文摘The microstructure of nickel-based single-crystal(SC) superalloys has a pivotal influence on their creep properties. The addition of the Re element not only enhances the long-term creep properties of nickel-based SC superalloys, but also results in the formation of a topologically close-packed(TCP) phase which is a harmful and brittle hard phase. Here, high-temperature creep interruption tests of a nickel-based SC superalloy that contains4.8 wt% Re were performed under various temperatures and stress conditions, and the evolution of microstructure during creep was observed by scanning electron microscopy(SEM). The volume fraction of the TCP phase was also extracted to explore the mechanism that controls the impacts of the TCP phase on the creep properties.According to the microstructure evolution mechanism, the influence of the TCP phase was attributed to the initial damage and critical shear stress of the material. A creep performance prediction model for nickel-based SC superalloys considering the precipitation of the TCP phase that is based on the crystal plasticity theory and a modified creep damage model was established. The simulation curves fit well with the experimental results and the errors between prediction creep life with test results are within 5%.
基金financial support from the National Natural Science Foundation of China and Baowu Steel Group Co.,Ltd.(Grant No.U1660205)the financial support from the Fundamental Research Funds for the Central Universities (No.N2002024)。
文摘Heat-resistant ferritic stainless steels are widely used in many high-temperature applications such as power plants,automotive exhaust manifolds and solid oxide fuel cell interconnects due to their low price,low coefficient of thermal expansion,high thermal conductivity,high thermal fatigue resistance,high creep performance and excellent corrosion resistance.High-temperature strength,formability,high-temperature oxidation resistance and creep performance are the main evaluation criteria for the application.With the development of relevant industries,higher requirements are proposed for the performance of ferritic stainless steels.Therefore,the development of a new generation of heat-resistant ferritic stainless steel has received extensive attention.In this presentation,we summarized the research progress of heat-resistant ferritic stainless steels including high-temperature strength,formability,high-temperature oxidation resistance and creep performance.Meanwhile,some suggestions are given for alloy composition design and microstructure optimization.The future research direction of heat-resistant ferritic stainless steels also prospected.
基金support from Chinese Committee for Magnesium and its Application
文摘China has been developed into one of the most active regions in terms of both fundamental and applied research on magnesium (Mg) and its alloys in the world from a solid base laid by its prominent metallurgist and materials scientists over the past decades. Nowadays, a large number of young-generation researchers have been inspired by their predecessors and become the key participants in the fields of Mg alloys, which consequently led to the establishment of China Youth Scholar Society for Magnesium Alloys Research in 2015. Since then, the first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively. A number of crucial research inter- ests related to fundamental and applied Mg research were discussed at the conferences and summarized in this short perspective, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments. Herein, four main aspects are included as follows: i) Plastic deformation mechanism and strengthening strategy, ii) Design and development of new Mg-based materials, iii) Key service properties, and iv) New processing technologies.