期刊文献+
共找到405,706篇文章
< 1 2 250 >
每页显示 20 50 100
Rarely fast progressive memory loss diagnosed as Creutzfeldt-Jakob disease:A case report
1
作者 Yong-Wei Xu Jie-Qun Wang +2 位作者 Wei Zhang Shu-Chang Xu Yun-Xia Li 《World Journal of Clinical Cases》 SCIE 2021年第34期10638-10644,共7页
BACKGROUND Creutzfeldt-Jakob disease(CJD)is a rare degenerative disease of the central nervous system that can be contagious or hereditary and is a rare cause of rapidly progressive dementia.It almost always results i... BACKGROUND Creutzfeldt-Jakob disease(CJD)is a rare degenerative disease of the central nervous system that can be contagious or hereditary and is a rare cause of rapidly progressive dementia.It almost always results in death within 1-2 years from symptom onset.CASE SUMMARY Here,we report the case of a 57-year-old male who initially experienced dizziness followed by a 1-mo fast decline in memory function.He presented to the local hospital and underwent magnetic resonance imaging and cerebrospinal fluid(CSF)examination,with no definitive diagnosis.However,the symptoms of progressive forgetting worsened.In addition,he exhibited progressive involuntary tremor of the limbs.Then,he came to our hospital,and according to the results of CSF examination,electroencephalography(EEG)and magnetic resonance imaging(MRI)tests and clinical manifestations of cerebellar ataxia,dementia,and myoclonus that rapidly progressed,with a short duration of illness,he was finally diagnosed with sporadic CJD(sCJD).CONCLUSION This case report aims to create awareness among physicians to emphasize auxiliary examination,CSF examination,EEG and MRI tests and recognition of cerebellar ataxia,dementia,and myoclonus that rapidly progress to prompt pursuit of an early diagnosis and identification of sCJD and to reduce complications. 展开更多
关键词 creutzfeldt-jakob disease Prion disorders Progressive memory loss DEMENTIA Case report
下载PDF
Creutzfeldt-Jakob disease presenting with bilateral hearing loss:A case report
2
作者 Seunghee Na Se A Lee +2 位作者 Jong Dae Lee Eek-Sung Lee Tae-Kyeong Lee 《World Journal of Clinical Cases》 SCIE 2022年第18期6333-6337,共5页
BACKGROUND Sporadic Creutzfeldt-Jakob disease(s CJD)is a prion disease characterized as a fatal transmissible neurodegenerative disorder.Dizziness is often the first presenting symptom of s CJD,but hearing loss as an ... BACKGROUND Sporadic Creutzfeldt-Jakob disease(s CJD)is a prion disease characterized as a fatal transmissible neurodegenerative disorder.Dizziness is often the first presenting symptom of s CJD,but hearing loss as an early manifestation is very rare.CASE SUMMARY A 76-year-old man presented with bilateral sudden hearing impairment and dizziness for 10 d.He was taking medications for hypertension and diabetes.He denied any difficulty with activities of daily living or hearing impairment before the onset of symptoms.Pure tone audiometry showed bilateral severe hearing impairment.Brain magnetic resonance imaging(MRI)and laboratory tests were within normal limits.Given his diagnosis of sudden sensory hearing loss,the patient received corticosteroid treatment but it was ineffective.Two weeks later,he complained of aggravated gait impairment,disorientation,and cognitive impairment.Repeat brain MRI showed diffuse cortical high signal intensities on diffusion-weighted imaging.In cerebrospinal fluid analysis,the real-time quaking-induced conversion assay was positive,and 14-3-3 protein was detected in the by western blotting.Considering all the data,we diagnosed probable s CJD,and the patient’s symptoms rapidly progressed into akinetic mutism.CONCLUSION For patients with abrupt bilateral hearing impairment,especially in the elderly,various differential diagnoses,including s CJD,should be considered. 展开更多
关键词 Case report creutzfeldt-jakob disease Bilateral hearing loss Diffusion-weighted imaging Real-time quaking-induced conversion assay
下载PDF
Creutzfeldt-Jakob disease presenting as Korsakoff syndrome caused by E196A mutation in PRNP gene:A case report
3
作者 Yong-Kang Zhang Jia-Rui Liu +3 位作者 Kang-Li Yin Yuan Zong Yu-Zhen Wang Ye-Min Cao 《World Journal of Clinical Cases》 SCIE 2023年第25期5982-5987,共6页
BACKGROUND Prion diseases are a group of degenerative nerve diseases that are caused by infectious prion proteins or gene mutations.In humans,prion diseases result from mutations in the prion protein gene(PRNP).Only a... BACKGROUND Prion diseases are a group of degenerative nerve diseases that are caused by infectious prion proteins or gene mutations.In humans,prion diseases result from mutations in the prion protein gene(PRNP).Only a limited number of cases involving a specific PRNP mutation at codon 196(E196A)have been reported.The coexistence of Korsakoff syndrome in patients with Creutzfeldt-Jakob disease(CJD)caused by E196A mutation has not been documented in the existing literature.CASE SUMMARY A 61-year-old Chinese man initially presented with Korsakoff syndrome,followed by rapid-onset dementia,visual hallucinations,akinetic mutism,myoclonus,and hyperthermia.The patient had no significant personal or familial medical history.Magnetic resonance imaging of the brain revealed extensive hyperintense signals in the cortex,while positron emission tomography/computed tomography showed a diffuse reduction in cerebral cortex metabolism.Routine biochemical and microorganism testing of the cerebrospinal fluid(CSF)yielded normal results.Tests for thyroid function,human immunodeficiency virus,syphilis,vitamin B1 and B12 levels,and autoimmune rheumatic disorders were normal.Blood and CSF tests for autoimmune encephalitis and autoantibody-associated paraneoplastic syndrome yielded negative results.A test for 14-3-3 protein in the CSF yielded negative results.Whole-genome sequencing revealed a diseasecausing mutation in PRNP.The patient succumbed to the illness 11 months after the initial symptom onset.CONCLUSION Korsakoff syndrome,typically associated with alcohol intoxication,also manifests in CJD patients.Individuals with CJD along with PRNP E196A mutation may present with Korsakoff syndrome. 展开更多
关键词 Prion disease creutzfeldt-jakob disease Korsakoff syndrome PRNP gene 14-3-3 proteins Case report
下载PDF
Sporadic Creutzfeldt-Jakob Disease Presenting with Visual Disturbance—A Case Report in China 被引量:1
4
作者 Guohong Tian Lin Sun +1 位作者 Yunhong He Xiaojun Zhang 《International Journal of Clinical Medicine》 2013年第7期321-324,共4页
Creutzfeldt-Jakob disease (CJD) is a rare but fatal neurodegenerative prion disease. Classic CJD comprises a clinical triad of rapidly progressive dementia, myoclonus, and EEG abnormality. At initial presentation, thi... Creutzfeldt-Jakob disease (CJD) is a rare but fatal neurodegenerative prion disease. Classic CJD comprises a clinical triad of rapidly progressive dementia, myoclonus, and EEG abnormality. At initial presentation, this classic triad is present only in a minority of cases. Visual impairment is one of the predominant manifestations in the course of CJD, especially in Heidenhain variant phenotype. We reported a case presenting with progressive blurred vision, along with other neurological symptoms, who diagnosed as sporadic CJD with cortical blindness in China. 展开更多
关键词 creutzfeldt-jakob disease Visual DISTURBANCE Heidenhain VARIANT Diffusion WEIGHTED Imaging
下载PDF
皮质-纹状体-脊髓变性(creutzfeldt-jakob disease)的周期性脑电图
5
作者 逯恒东 陈芷若 《现代电生理学杂志》 2014年第2期72-78,83,共8页
目的:观察研究皮层-纹状体-脊髓变性患者的脑电图周期波特征.方法:对9名皮层-纹状体-脊髓变性患者的25份脑电图进行分析.结果:我们发现:(1)7名患者出现了周期性三相波,2名出现了周期性双相尖波;(2)6名患者的周期性脑波出现在起... 目的:观察研究皮层-纹状体-脊髓变性患者的脑电图周期波特征.方法:对9名皮层-纹状体-脊髓变性患者的25份脑电图进行分析.结果:我们发现:(1)7名患者出现了周期性三相波,2名出现了周期性双相尖波;(2)6名患者的周期性脑波出现在起病后的第5周到第13周; (3)多数周期性脑波的出现是短暂的.其中2名患者的周期性脑波在出现1周后就减少解体;(4)周期性脑波消失后,在慢波背景上,会出现持续2 ~4s的爆发抑制.结论:周期性脑波的出现对皮层-纹状体-脊髓变性的诊断意义重大,对疑似皮层-纹状体-脊髓变性的患者每周进行脑电图检查非常必要. 展开更多
关键词 皮层-纹状体-脊髓变性 脑电图 周期脑波 三相波 双相尖波
下载PDF
Diffusion-weighted imaging and fluid-attenuated inversion recovery sequence in sporadic Creutzfeldt-Jakob disease:One-case report
6
作者 Rosa Morabito Annalisa Baglieri +8 位作者 Rosella Ciurleo Francesco Corallo Rosaria De Luca Simona De Salvo Silvia Guerrera Francesca Timpano Maria Adele Marino Placido Bramanti Silvia Marino 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第29期2295-2297,共3页
The diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is extremely difficult. Diffusion-weighted imaging has been shown to be the most sensitive technique for the detection of signal alterations in sCJD patient... The diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is extremely difficult. Diffusion-weighted imaging has been shown to be the most sensitive technique for the detection of signal alterations in sCJD patients. The present study analyzed the diagnostic value of diffusion-weighted imaging and fluid-attenuated inversion recovery sequence in the early stage of sCJD in one female patient and correlated the clinical symptoms during disease course and magnetic resonance manifestations. Thalamic and basal ganglia hyperintensities were observed on magnetic resonance images in a very early stage, i.e., when the clinical typical manifestations of the disease were not present. With the progression of the disease, cortical and basal ganglia hyperintensities were observed on magnetic resonance images, showing an obvious cerebral atrophy. These findings suggest that diffusion-weighted imaging and fluid-attenuated inversion recovery sequence are helpful in diagnosing sCJD. 展开更多
关键词 Creutzfeldt-Jacob disease fluid-attenuated inversion recovery diffusion-weighted imaging magnetic resonance imaging
下载PDF
Copper homeostasis and neurodegenerative diseases
7
作者 Yuanyuan Wang Daidi Li +2 位作者 Kaifei Xu Guoqing Wang Feng Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第11期3124-3143,共20页
Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is... Copper,one of the most prolific transition metals in the body,is required for normal brain physiological activity and allows various functions to work normally through its range of concentrations.Copper homeostasis is meticulously maintained through a complex network of copper-dependent proteins,including copper transporters(CTR1 and CTR2),the two copper ion transporters the Cu-transporting ATPase 1(ATP7A)and Cu-transporting beta(ATP7B),and the three copper chaperones ATOX1,CCS,and COX17.Disruptions in copper homeostasis can lead to either the deficiency or accumulation of copper in brain tissue.Emerging evidence suggests that abnormal copper metabolism or copper binding to various proteins,including ceruloplasmin and metallothionein,is involved in the pathogenesis of neurodegenerative disorders.However,the exact mechanisms underlying these processes are not known.Copper is a potent oxidant that increases reactive oxygen species production and promotes oxidative stress.Elevated reactive oxygen species levels may further compromise mitochondrial integrity and cause mitochondrial dysfunction.Reactive oxygen species serve as key signaling molecules in copper-induced neuroinflammation,with elevated levels activating several critical inflammatory pathways.Additionally,copper can bind aberrantly to several neuronal proteins,including alphasynuclein,tau,superoxide dismutase 1,and huntingtin,thereby inducing neurotoxicity and ultimately cell death.This study focuses on the latest literature evaluating the role of copper in neurodegenerative diseases,with a particular focus on copper-containing metalloenzymes and copper-binding proteins in the regulation of copper homeostasis and their involvement in neurodegenerative disease pathogenesis.By synthesizing the current findings on the functions of copper in oxidative stress,neuroinflammation,mitochondrial dysfunction,and protein misfolding,we aim to elucidate the mechanisms by which copper contributes to a wide range of hereditary and neuronal disorders,such as Wilson's disease,Menkes'disease,Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,Huntington's disease,and multiple sclerosis.Potential clinically significant therapeutic targets,including superoxide dismutase 1,D-penicillamine,and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline,along with their associated therapeutic agents,are further discussed.Ultimately,we collate evidence that copper homeostasis may function in the underlying etiology of several neurodegenerative diseases and offer novel insights into the potential prevention and treatment of these diseases based on copper homeostasis. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis disease copper homeostasis copper toxicity Huntington's disease Menkes'disease multiple sclerosis neurodegenerative disease Parkinson's disease Wilson's disease
下载PDF
Toward understanding the role of genomic repeat elements in neurodegenerative diseases
8
作者 Zhengyu An Aidi Jiang Jingqi Chen 《Neural Regeneration Research》 SCIE CAS 2025年第3期646-659,共14页
Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage se... Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements. 展开更多
关键词 Alzheimer's disease ATAXIA deep learning long-read sequencing NEURODEGENERATION neurodegenerative diseases Parkinson's disease repeat element structural variant
下载PDF
Pyrroloquinoline quinone:a potential neuroprotective compound for neurodegenerative diseases targeting metabolism
9
作者 Alessio Canovai Pete A.Williams 《Neural Regeneration Research》 SCIE CAS 2025年第1期41-53,共13页
Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the di... Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the diet being available in foodstuffs,conferring the potential of this compound to be supplemented by dietary administration.Pyrroloquinoline quinone’s nutritional role in mammalian health is supported by the extensive deficits in reproduction,growth,and immunity resulting from the dietary absence of pyrroloquinoline quinone,and as such,pyrroloquinoline quinone has been considered as a“new vitamin.”Although the classification of pyrroloquinoline quinone as a vitamin needs to be properly established,the wide range of benefits for health provided has been reported in many studies.In this respect,pyrroloquinoline quinone seems to be particularly involved in regulating cell signaling pathways that promote metabolic and mitochondrial processes in many experimental contexts,thus dictating the rationale to consider pyrroloquinoline quinone as a vital compound for mammalian life.Through the regulation of different metabolic mechanisms,pyrroloquinoline quinone may improve clinical deficits where dysfunctional metabolism and mitochondrial activity contribute to induce cell damage and death.Pyrroloquinoline quinone has been demonstrated to have neuroprotective properties in different experimental models of neurodegeneration,although the link between pyrroloquinoline quinone-promoted metabolism and improved neuronal viability in some of such contexts is still to be fully elucidated.Here,we review the general properties of pyrroloquinoline quinone and its capacity to modulate metabolic and mitochondrial mechanisms in physiological contexts.In addition,we analyze the neuroprotective properties of pyrroloquinoline quinone in different neurodegenerative conditions and consider future perspectives for pyrroloquinoline quinone’s potential in health and disease. 展开更多
关键词 METABOLISM MITOCHONDRIA neurodegenerative disease NEUROPROTECTION pyrroloquinoline quinone retinal diseases
下载PDF
Potential role of tanycyte-derived neurogenesis in Alzheimer's disease
10
作者 Guibo Qi Han Tang +2 位作者 Jianian Hu Siying Kang Song Qin 《Neural Regeneration Research》 SCIE CAS 2025年第6期1599-1612,共14页
Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. T... Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. The precise coordination of the gene networks controlling neurogenesis in naive and mature tanycytes is essential for maintaining homeostasis in adulthood. However, our understanding of the molecular mechanisms and signaling pathways that govern the proliferation and differentiation of tanycytes into neurons remains limited. This article aims to review the recent advancements in research into the mechanisms and functions of tanycyte-derived neurogenesis. Studies employing lineage-tracing techniques have revealed that the neurogenesis specifically originating from tanycytes in the hypothalamus has a compensatory role in neuronal loss and helps maintain energy homeostasis during metabolic diseases. Intriguingly,metabolic disorders are considered early biomarkers of Alzheimer's disease. Furthermore,the neurogenic potential of tanycytes and the state of newborn neurons derived from tanycytes heavily depend on the maintenance of mild microenvironments, which may be disrupted in Alzheimer's disease due to the impaired blood–brain barrier function.However, the specific alterations and regulatory mechanisms governing tanycyte-derived neurogenesis in Alzheimer's disease remain unclear. Accumulating evidence suggests that tanycyte-derived neurogenesis might be impaired in Alzheimer's disease, exacerbating neurodegeneration. Confirming this hypothesis, however, poses a challenge because of the lack of long-term tracing and nucleus-specific analyses of newborn neurons in the hypothalamus of patients with Alzheimer's disease. Further research into the molecular mechanisms underlying tanycyte-derived neurogenesis holds promise for identifying small molecules capable of restoring tanycyte proliferation in neurodegenerative diseases. This line of investigation could provide valuable insights into potential therapeutic strategies for Alzheimer's disease and related conditions. 展开更多
关键词 Alzheimer's disease blood–brain barrier ependymoglial cells HYPOTHALAMUS metabolic diseases neural stem cells NEUROGENESIS neuroinflammatory diseases NEURONS TANYCYTE
下载PDF
Targeting capabilities of engineered extracellular vesicles for the treatment of neurological diseases
11
作者 Xinyu Yang Xiangyu Gao +2 位作者 Xiaofan Jiang Kangyi Yue Peng Luo 《Neural Regeneration Research》 SCIE CAS 2025年第11期3076-3094,共19页
Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–b... Recent advances in research on extracellular vesicles have significantly enhanced their potential as therapeutic agents for neurological diseases.Owing to their therapeutic properties and ability to cross the blood–brain barrier,extracellular vesicles are recognized as promising drug delivery vehicles for various neurological conditions,including ischemic stroke,traumatic brain injury,neurodegenerative diseases,glioma,and psychosis.However,the clinical application of natural extracellular vesicles is hindered by their limited targeting ability and short clearance from the body.To address these limitations,multiple engineering strategies have been developed to enhance the targeting capabilities of extracellular vesicles,thereby enabling the delivery of therapeutic contents to specific tissues or cells.Therefore,this review aims to highlight the latest advancements in natural and targeting-engineered extracellular vesicles,exploring their applications in treating traumatic brain injury,ischemic stroke,Parkinson's disease,Alzheimer's disease,amyotrophic lateral sclerosis,glioma,and psychosis.Additionally,we summarized recent clinical trials involving extracellular vesicles and discussed the challenges and future prospects of using targeting-engineered extracellular vesicles for drug delivery in treating neurological diseases.This review offers new insights for developing highly targeted therapies in this field. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis engineered extracellular vesicles GLIOMA ischemic stroke neurological diseases Parkinson's disease PSYCHOSIS targeted drug delivery traumatic brain injury
下载PDF
Neuronal regulated cell death in aging-related neurodegenerative diseases:key pathways and therapeutic potentials
12
作者 Run Song Shiyi Yin +1 位作者 Jiannan Wu Junqiang Yan 《Neural Regeneration Research》 SCIE CAS 2025年第8期2245-2263,共19页
Regulated cell death(such as apoptosis,necroptosis,pyroptosis,autophagy,cuproptosis,ferroptosis,disulfidptosis)involves complex signaling pathways and molecular effectors,and has been proven to be an important regulat... Regulated cell death(such as apoptosis,necroptosis,pyroptosis,autophagy,cuproptosis,ferroptosis,disulfidptosis)involves complex signaling pathways and molecular effectors,and has been proven to be an important regulatory mechanism for regulating neuronal aging and death.However,excessive activation of regulated cell death may lead to the progression of aging-related diseases.This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases.Notably,the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases.These forms of cell death exacerbate disease progression by promoting inflammation,oxidative stress,and pathological protein aggregation.The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms,with a focus on ferroptosis,cuproptosis,and disulfidptosis.For instance,FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation,while copper mediates glutathione peroxidase 4 degradation,enhancing ferroptosis sensitivity.Additionally,inhibiting the Xc-transport system to prevent ferroptosis can increase disulfide formation and shift the NADP^(+)/NADPH ratio,transitioning ferroptosis to disulfidptosis.These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms.In conclusion,identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions. 展开更多
关键词 apoptosis autophagy cuproptosis disulfidptosis ferroptosis NECROPTOSIS neurodegenerative disease neurological aging diseases PANoptosis PYROPTOSIS
下载PDF
Nanomaterials-mediated lysosomal regulation:a robust protein-clearance approach for the treatment of Alzheimer’s disease
13
作者 Mengqi Hao Jianjian Chu +8 位作者 Tinglin Zhang Tong Yin Yuankai Gu Wendanqi Liang Wenbo Ji Jianhua Zhuang Yan Liu Jie Gao You Yin 《Neural Regeneration Research》 SCIE CAS 2025年第2期424-439,共16页
Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within... Alzheimer’s disease is a debilitating,progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins,including amyloid plaques and intracellular tau tangles,primarily within the brain.Lysosomes,crucial intracellular organelles responsible for protein degradation,play a key role in maintaining cellular homeostasis.Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases,including Alzheimer’s disease.Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer’s disease.Currently,the efficacy of drugs in treating Alzheimer’s disease is limited,with major challenges in drug delivery efficiency and targeting.Recently,nanomaterials have gained widespread use in Alzheimer’s disease drug research owing to their favorable physical and chemical properties.This review aims to provide a comprehensive overview of recent advances in using nanomaterials(polymeric nanomaterials,nanoemulsions,and carbon-based nanomaterials)to enhance lysosomal function in treating Alzheimer’s disease.This review also explores new concepts and potential therapeutic strategies for Alzheimer’s disease through the integration of nanomaterials and modulation of lysosomal function.In conclusion,this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer’s disease.The application of nanotechnology to the development of Alzheimer’s disease drugs brings new ideas and approaches for future treatment of this disease. 展开更多
关键词 Alzheimer’s disease autophagy dysfunction lysosomal acidification lysosomal system nanomaterials neurodegenerative diseases
下载PDF
The complex roles of m^(6)A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases
14
作者 Yanxi Li Jing Xue +8 位作者 Yuejia Ma Ke Ye Xue Zhao Fangliang Ge Feifei Zheng Lulu Liu Xu Gao Dayong Wang Qing Xia 《Neural Regeneration Research》 SCIE CAS 2025年第6期1582-1598,共17页
N6-methyladenosine(m^(6)A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis a... N6-methyladenosine(m^(6)A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m^(6)A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m^(6)A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m^(6)A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m^(6)A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m^(6)A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m^(6)A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m^(6)A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m^(6)A's role in neurodegenerative processes. The roles of m^(6)A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the timespecific nature of m^(6)A and its varying effects on distinct brain regions and in different environments. 展开更多
关键词 Alzheimer's disease cell self-renewal central nervous system MEMORY MICROGLIA nerve regeneration neurodegenerative diseases NEUROGENESIS RNA methylation
下载PDF
Mitochondrial therapeutics and mitochondrial transfer for neurodegenerative diseases and aging
15
作者 Neville Ng Michelle Newbery +1 位作者 Nicole Miles Lezanne Ooi 《Neural Regeneration Research》 SCIE CAS 2025年第3期794-796,共3页
Mitochondrial dysfunction and neurodegeneration:Progressive neurodegenerative diseases affect a significant proportion of the population;in a single year,there are as many as 276 million disabilities and 9 million dea... Mitochondrial dysfunction and neurodegeneration:Progressive neurodegenerative diseases affect a significant proportion of the population;in a single year,there are as many as 276 million disabilities and 9 million deaths as a result of neurological diseases. 展开更多
关键词 DEGENERATIVE diseaseS MITOCHONDRIAL
下载PDF
Role of resident memory T cells in neuroinflammatory and neurodegenerative diseases in the central nervous system
16
作者 Kimitoshi Kimura 《Neural Regeneration Research》 SCIE CAS 2025年第11期3227-3228,共2页
The immune system has been attracting increasing attention in the field of chronic neurological disorders in the central nervous system(CNS).Autoreactive T cells targeting CNS antigens play a crucial role in the devel... The immune system has been attracting increasing attention in the field of chronic neurological disorders in the central nervous system(CNS).Autoreactive T cells targeting CNS antigens play a crucial role in the development of various autoimmune diseases,such as multiple sclerosis(MS)and neuromyelitis optica spectrum disorder(NMOSD).Moreover,T cells are now recognized as a pivotal contributor to the pathology of neurodegenerative disorders,including Alzheimer's disease(AD),Parkinson's disease(PD),and multiple system atrophy. 展开更多
关键词 diseaseS DEGENERATIVE PATHOLOGY
下载PDF
Amyloid-β-induced disruption of axon-initial-segment mitochondria localization:consequences for TAU missorting in Alzheimer's disease pathology
17
作者 Daniel Adam Felix Langerscheidt Hans Zempel 《Neural Regeneration Research》 SCIE CAS 2025年第5期1407-1408,共2页
TAU is a neuronal microtubule-associated protein preferentially located in axons.In a battery of neurodegenerative diseases termed"tauopathies,"including Alzheimer's disease (AD),TAU is missorted and abn... TAU is a neuronal microtubule-associated protein preferentially located in axons.In a battery of neurodegenerative diseases termed"tauopathies,"including Alzheimer's disease (AD),TAU is missorted and abnormally phosphorylated,leading to filamentous accumulations of hyperphosphorylated TAU,a pathological hallmark and potential disease driver of AD and related tauopathies (Zempel,2024). 展开更多
关键词 ALZHEIMER TAU diseases
下载PDF
Brain-penetrating neurotrophic factor mimetics: HER-096 as a disease-modifying therapy for Parkinson’s disease
18
作者 Natalia Kulesskaya Kira M.Holmström Henri J.Huttunen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1094-1095,共2页
Neurotrophic factors as a therapeutic approach in neurodegenerative diseases:A major unmet need in the field of central nervous system diseases is disease-modifying treatments.While for decades there have been various... Neurotrophic factors as a therapeutic approach in neurodegenerative diseases:A major unmet need in the field of central nervous system diseases is disease-modifying treatments.While for decades there have been various symptomatic treatments available to alleviate the symptoms of the disease,disease-modification,i.e.treatments that stop,significantly delay,or reverse the progression of the disease,has been turned out to a difficult goal to achieve. 展开更多
关键词 diseaseS treatment THERAPEUTIC
下载PDF
Netrin-1 signaling pathway mechanisms in neurodegenerative diseases
19
作者 Kedong Zhu Hualong Wang +2 位作者 Keqiang Ye Guiqin Chen Zhaohui Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期960-972,共13页
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur... Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders. 展开更多
关键词 Alzheimer’s disease axon guidance colorectal cancer Netrin-1 receptors Netrin-1 signaling pathways NETRIN-1 neurodegenerative diseases neuron survival Parkinson’s disease UNC5C
下载PDF
Microglial dysfunction and genetic risk for neurodegenerative disease
20
作者 Debra S.MacDonald Jay Penney 《Neural Regeneration Research》 SCIE CAS 2025年第5期1401-1402,共2页
Neurodegenerative disorders such as Alzheimer's and Parkinson's diseases a re increasing in prevalence as world populations age.While tremendous progress has been made,our understanding of the mechanisms that ... Neurodegenerative disorders such as Alzheimer's and Parkinson's diseases a re increasing in prevalence as world populations age.While tremendous progress has been made,our understanding of the mechanisms that underlie the development of these diseases remains far from com plete.More troubling,despite the growing emotional and financial toll being to ken by neurodegenerative disorders,existing treatment options are limited almost exclusively to those that help manage symptoms but that lack the ability to alter the progression of the disease(Liu et al.,2022). 展开更多
关键词 DEGENERATIVE diseaseS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部