The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board...The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board train control system.To conduct fault prediction for the BTM unit based on actual fault data,this study proposes a prediction method combining reliability statistics and machine learning,and achieves the fusion of prediction results from different dimensions through multi-method interactive validation.Firstly,a method for predicting equipment fault time targeting batch equipment is introduced.This method utilizes reliability statistics to construct a model of the remaining faultless operating time distribution considering uncertainty,thereby predicting the remaining faultless operating probability of the BTM unit.Secondly,considering the complexity of the BTM unit’s fault mechanism,the small sample size of fault cases,and the potential presence of multiple fault features in fault text records,an individual-oriented fault prediction method based on Bayesian-optimized Gradient Boosting Regression Tree(Bayes-GBRT)is proposed.This method achieves better prediction results compared to linear regression algorithms and random forest regression algorithms,with an average absolute error of only 0.224 years for predicting the fault time of this type of equipment.Finally,a multi-method interactive validation approach is proposed,enabling the fusion and validation of multi-dimensional results.The results indicate that the predicted fault time and the actual fault time conform to a log-normal distribution,and the parameter estimation results are basically consistent,verifying the accuracy and effectiveness of the prediction results.The above research findings can provide technical support for the maintenance and modification of BTM units,effectively reducing maintenance costs and ensuring the safe operation of high-speed railway,thus having practical engineering value for preventive maintenance.展开更多
The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct n...The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.展开更多
The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early c...The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early contact and contact penetration can occur when the contact conditions are unsuitable,and(2)the method is not available for contact problems involving rigid-nonrigid materials,which can cause numerical instability.This study presents a new hybrid contact approach for the MPM to address these limitations to simulate the soil and structure interactions.The approach combines the advantages of point-point and point-segment contacts to implement contact detection,satisfying the impenetrability condition and smoothing the corner contact problem.The proposed approach is first validated through a disk test on an inclined slope.Then,several typical cases,such as granular collapse,bearing capacity,and deformation of a flexible retaining wall,are simulated to demonstrate the robustness of the proposed approach compared with FEM or analytical solutions.Finally,the proposed method is used to simulate the impact of sand flow on a deformable structure.The results show that the proposed contact approach can well describe the phenomenon of soil-structure interaction problems.展开更多
A brain tumor occurs when abnormal cells grow, sometimes very rapidly, into an abnormal mass of tissue. The tumor can infect normal tissue, so there is an interaction between healthy and infected cell. The aim of this...A brain tumor occurs when abnormal cells grow, sometimes very rapidly, into an abnormal mass of tissue. The tumor can infect normal tissue, so there is an interaction between healthy and infected cell. The aim of this paper is to propose some efficient and accurate numerical methods for the computational solution of one-dimensional continuous basic models for the growth and control of brain tumors. After computing the analytical solution, we construct approximations of the solution to the problem using a standard second order finite difference method for space discretization and the Crank-Nicolson method for time discretization. Then, we investigate the convergence behavior of Conjugate gradient and generalized minimum residual as Krylov subspace methods to solve the tridiagonal toeplitz matrix system derived.展开更多
N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning m...N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.展开更多
To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pip...To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent.展开更多
The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic perfo...The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.展开更多
To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surfac...To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.展开更多
In recent years,forest fires and maritime accidents have occurred frequently,which have had a bad impact on human production and life.Thus,the development of seaplanes is an increasingly urgent demand.It is important ...In recent years,forest fires and maritime accidents have occurred frequently,which have had a bad impact on human production and life.Thus,the development of seaplanes is an increasingly urgent demand.It is important to study the taxiing process of seaplanes for the development of seaplanes,which is a strong nonlinear fluid-structure interaction problem.In this paper,the smoothed particle hydrodynamics(SPH)method based on the Lagrangian framework is utilized to simulate the taxiing process of seaplanes,and the SPH results are compared with those of the finite volume method(FVM)based on the Eulerian method.The results show that the SPH method can not only give the same accuracy as the FVM but also have a strong ability to capture the splashing waves in the taxiing process,which is quite meaningful for the subsequent study of the effect of a splash on other parts of the seaplane.展开更多
Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes...Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes.Even,a viral infection is often initiated through virus-host protein interactions.Protein-protein interactions(PPIs)are the physical contacts between two or more proteins and they represent complex biological functions.Nowadays,PPIs have been used to construct PPI networks to study complex pathways for revealing the functions of unknown proteins.Scientists have used PPIs to find the molecular basis of certain diseases and also some potential drug targets.In this review,we will discuss how PPI networks are essential to understand the molecular basis of virus-host relationships and several databases which are dedicated to virus-host interaction studies.Here,we present a short but comprehensive review on PPIs,including the experimental and computational methods of finding PPIs,the databases dedicated to virus-host PPIs,and the associated various applications in protein interaction networks of some lethal viruses with their hosts.展开更多
Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Latti...Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.展开更多
In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducte...In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%.展开更多
In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP...In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.展开更多
In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this...In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.展开更多
A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro...A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.展开更多
To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions...To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.展开更多
A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic perfor...A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic performance of using twisting towers over regular ones is investigated.The twisting tower is a simulation of the Evolution Tower(Moscow).The towers’skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation.The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis(New Mansoura City,Egypt).The only difference between both towers is their shape in elevation.The whole system is modelled and analyzed in a single step as one full 3D model,which is known as the direct approach in SSI.All analyses are carried out using finite-element software(Midas GTS NX).Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs.Based on the results,it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility,as it leads to lengthening the vibration period,increasing the story drift and the base shear for both cases.展开更多
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ...A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.展开更多
Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boun...Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boundary(IB)method developed in our previous work.For the moving structure modeled using the sharp interface IB method,a recursive box method is developed for efficiently classifying the background grid nodes.For the particles modeled using the diffuse interface IB method,a‘master-slave’approach is adopted.For the particle-particle interaction(PPI)and particle-structure interaction(PSI),a fast algorithm for classifying the active and inactive Lagrangian points,which discretize the particle surface,is developed for the‘dry’contact approach.The results show that the proposed recursive box method can reduce the classifying time from 52seconds to 0.3 seconds.Acceptable parallel efficiency is obtained for cases with different particle concentrations.Furthermore,the lubrication model is utilized when a particle approaches a wall,enabling an accurate simulation of the rebounding phenomena in the benchmark particle-wall collision problem.At last,the capability of the proposed computational framework is demonstrated by simulating particle-laden turbulent channel flows with rough walls.展开更多
基金supported by the Integrated Rail Transit Dispatch Control and Intermodal Transport Service Technology Project(Grant No.2022YFB4300500).
文摘The Balise Transmission Module(BTM)unit of the on-board train control system is a crucial component.Due to its unique installation position and complex environment,this unit has a higher fault rate within the on-board train control system.To conduct fault prediction for the BTM unit based on actual fault data,this study proposes a prediction method combining reliability statistics and machine learning,and achieves the fusion of prediction results from different dimensions through multi-method interactive validation.Firstly,a method for predicting equipment fault time targeting batch equipment is introduced.This method utilizes reliability statistics to construct a model of the remaining faultless operating time distribution considering uncertainty,thereby predicting the remaining faultless operating probability of the BTM unit.Secondly,considering the complexity of the BTM unit’s fault mechanism,the small sample size of fault cases,and the potential presence of multiple fault features in fault text records,an individual-oriented fault prediction method based on Bayesian-optimized Gradient Boosting Regression Tree(Bayes-GBRT)is proposed.This method achieves better prediction results compared to linear regression algorithms and random forest regression algorithms,with an average absolute error of only 0.224 years for predicting the fault time of this type of equipment.Finally,a multi-method interactive validation approach is proposed,enabling the fusion and validation of multi-dimensional results.The results indicate that the predicted fault time and the actual fault time conform to a log-normal distribution,and the parameter estimation results are basically consistent,verifying the accuracy and effectiveness of the prediction results.The above research findings can provide technical support for the maintenance and modification of BTM units,effectively reducing maintenance costs and ensuring the safe operation of high-speed railway,thus having practical engineering value for preventive maintenance.
基金supported by the Japan Society for the Promotion of Science,KAKENHI Grant No.23H00475.
文摘The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions.
基金funding support from the National Nature Science Foundation of China(Grant No.52022060)the Key Laboratory of Impact and Safety Engineering(Ningbo University).
文摘The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early contact and contact penetration can occur when the contact conditions are unsuitable,and(2)the method is not available for contact problems involving rigid-nonrigid materials,which can cause numerical instability.This study presents a new hybrid contact approach for the MPM to address these limitations to simulate the soil and structure interactions.The approach combines the advantages of point-point and point-segment contacts to implement contact detection,satisfying the impenetrability condition and smoothing the corner contact problem.The proposed approach is first validated through a disk test on an inclined slope.Then,several typical cases,such as granular collapse,bearing capacity,and deformation of a flexible retaining wall,are simulated to demonstrate the robustness of the proposed approach compared with FEM or analytical solutions.Finally,the proposed method is used to simulate the impact of sand flow on a deformable structure.The results show that the proposed contact approach can well describe the phenomenon of soil-structure interaction problems.
文摘A brain tumor occurs when abnormal cells grow, sometimes very rapidly, into an abnormal mass of tissue. The tumor can infect normal tissue, so there is an interaction between healthy and infected cell. The aim of this paper is to propose some efficient and accurate numerical methods for the computational solution of one-dimensional continuous basic models for the growth and control of brain tumors. After computing the analytical solution, we construct approximations of the solution to the problem using a standard second order finite difference method for space discretization and the Crank-Nicolson method for time discretization. Then, we investigate the convergence behavior of Conjugate gradient and generalized minimum residual as Krylov subspace methods to solve the tridiagonal toeplitz matrix system derived.
文摘N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation.
基金supported by the National Natural Science Foundation of China(Grant Nos.42225702,42077235 and 41722209).
文摘To analyze the pipeline response under permanent ground deformation,the evolution of resistance acting on the pipe during the vertical downward offset is an essential ingredient.However,the efficient simulation of pipe penetration into soil is challenging for the conventional finite element(FE)method due to the large deformation of the surrounding soils.In this study,the B-spline material point method(MPM)is employed to investigate the pipe-soil interaction during the downward movement of rigid pipes buried in medium and dense sand.To describe the density-and stress-dependent behaviors of sand,the J2-deformation type model with state-dependent dilatancy is adopted.The effectiveness of the model is demonstrated by element tests and biaxial compression tests.Afterwards,the pipe penetration process is simulated,and the numerical outcomes are compared with the physical model tests.The effects of pipe size and burial depth are investigated with an emphasis on the mobilization of the soil resistance and the failure mechanisms.The simulation results indicate that the bearing capacity formulas given in the guidelines can provide essentially reasonable estimates for the ultimate force acting on buried pipes,and the recommended value of yield displacement may be underestimated to a certain extent.
基金National Natural Science Foundation of China under Grant Nos.51427901 and 51678407Tianjin Municipal Education Commission under Grant No.2021KJ055Fundamental Research Funds for the Central Universities of China under Grant No.2000560616。
文摘The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.
基金supported jointlyby the Chinese Academy of Sciences under Grant KZCX2-YW-220the National Basic Research Program of Chinaunder Grant 2009CB421405the National Natural Sci-ence Foundation of China under Grant No.40730952
文摘To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.
基金supported by: the National Key Research and Development Program of China (Grant No. 2021YFC2800700)the National Natural Science Foundation of China (Grant Nos. 52171329 and 12002404)+2 种基金the Natural Science Foundation of Guangdong Province of China (Grant No. 2022A1515012084)the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (Grant No. 231gbi023)supported by the GHfund A (Grant No. ghfund202302014084)
文摘In recent years,forest fires and maritime accidents have occurred frequently,which have had a bad impact on human production and life.Thus,the development of seaplanes is an increasingly urgent demand.It is important to study the taxiing process of seaplanes for the development of seaplanes,which is a strong nonlinear fluid-structure interaction problem.In this paper,the smoothed particle hydrodynamics(SPH)method based on the Lagrangian framework is utilized to simulate the taxiing process of seaplanes,and the SPH results are compared with those of the finite volume method(FVM)based on the Eulerian method.The results show that the SPH method can not only give the same accuracy as the FVM but also have a strong ability to capture the splashing waves in the taxiing process,which is quite meaningful for the subsequent study of the effect of a splash on other parts of the seaplane.
基金National Natural Science Foundation of China,No.31971180 and No.11474013.
文摘Almost all the cellular processes in a living system are controlled by proteins:They regulate gene expression,catalyze chemical reactions,transport small molecules across membranes,and transmit signal across membranes.Even,a viral infection is often initiated through virus-host protein interactions.Protein-protein interactions(PPIs)are the physical contacts between two or more proteins and they represent complex biological functions.Nowadays,PPIs have been used to construct PPI networks to study complex pathways for revealing the functions of unknown proteins.Scientists have used PPIs to find the molecular basis of certain diseases and also some potential drug targets.In this review,we will discuss how PPI networks are essential to understand the molecular basis of virus-host relationships and several databases which are dedicated to virus-host interaction studies.Here,we present a short but comprehensive review on PPIs,including the experimental and computational methods of finding PPIs,the databases dedicated to virus-host PPIs,and the associated various applications in protein interaction networks of some lethal viruses with their hosts.
基金WJD,JYZ,CLC,ZX,and ZGY were supported by the National Natural Science Foundation of China(Grant Number 51705143)the Education Department of Hunan Province(Grant Number 22B0464)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant Number QL20230249).
文摘Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering.
文摘In this work,a numerical study of the effects of soil-structure interaction(SSI)and granular material-structure interaction(GSI)on the nonlinear response and seismic capacity of flat-bottomed storage silos is conducted.A series of incremental dynamic analyses(IDA)are performed on a case of large reinforced concrete silo using 10 seismic recordings.The IDA results are given by two average IDA capacity curves,which are represented,as well as the seismic capacity of the studied structure,with and without a consideration of the SSI while accounting for the effect of GSI.These curves are used to quantify and evaluate the damage of the studied silo by utilizing two damage indices,one based on dissipated energy and the other on displacement and dissipated energy.The cumulative energy dissipation curves obtained by the average IDA capacity curves with and without SSI are presented as a function of the base shear,and these curves allow one to obtain the two critical points and the different limit states of the structure.It is observed that the SSI and GSI significantly influence the seismic response and capacity of the studied structure,particularly at higher levels of PGA.Moreover,the effect of the SSI reduces the damage index of the studied structure by 4%.
基金supported by the National Natural Science Foundation of China(Grant No.52201323).
文摘In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72031009 and 61473338)。
文摘In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.
基金open foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanicsthe Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.
基金supported by the Natural Science Foundation of Hainan Province(Grant No.520LH015)the Fundamental Research Funds for the Central Universities and the Major Projects of Strategic Emerging Industries in Shanghai(Grant No.BH3230001).
文摘To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.
文摘A dynamic analysis of both twisting and regular towers is carried out to determine the results of considering soil-structure interaction(SSI)on high-rise buildings.In addition,the difference between the seismic performance of using twisting towers over regular ones is investigated.The twisting tower is a simulation of the Evolution Tower(Moscow).The towers’skeletons consist of RC elements and rest on a reinforced concrete piled-raft foundation.The soil model is considered as multi-layered with the same soil properties as the zone chosen for the analysis(New Mansoura City,Egypt).The only difference between both towers is their shape in elevation.The whole system is modelled and analyzed in a single step as one full 3D model,which is known as the direct approach in SSI.All analyses are carried out using finite-element software(Midas GTS NX).Dynamic output responses due to three records of seismic loads are proposed and presented in some graphs.Based on the results,it is concluded that SSI has a considerable effect on the dynamic response of tall buildings mainly because of the foundation flexibility,as it leads to lengthening the vibration period,increasing the story drift and the base shear for both cases.
基金supported by the National Natural Science Foundation of China(Grant No.52078010)Beijing Natural Science Foundation(Grant No.JQ19029).
文摘A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.
基金Project supported by the National Natural Science Foundation of China(Nos.12202456 and12172360)the Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”of the National Natural Science Foundation of China(No.11988102)the China Postdoctoral Science Foundation(No.2021M693241)。
文摘Fluid-structure-particle interactions in three spatial dimensions happen in many environmental and engineering flows.This paper presents the parallel algorithms for the hybrid diffuse and sharp interface immersed boundary(IB)method developed in our previous work.For the moving structure modeled using the sharp interface IB method,a recursive box method is developed for efficiently classifying the background grid nodes.For the particles modeled using the diffuse interface IB method,a‘master-slave’approach is adopted.For the particle-particle interaction(PPI)and particle-structure interaction(PSI),a fast algorithm for classifying the active and inactive Lagrangian points,which discretize the particle surface,is developed for the‘dry’contact approach.The results show that the proposed recursive box method can reduce the classifying time from 52seconds to 0.3 seconds.Acceptable parallel efficiency is obtained for cases with different particle concentrations.Furthermore,the lubrication model is utilized when a particle approaches a wall,enabling an accurate simulation of the rebounding phenomena in the benchmark particle-wall collision problem.At last,the capability of the proposed computational framework is demonstrated by simulating particle-laden turbulent channel flows with rough walls.