Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep...Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.展开更多
This paper presents a detailed statistical exploration of crime trends in Chicago from 2001 to 2023, employing data from the Chicago Police Department’s publicly available crime database. The study aims to elucidate ...This paper presents a detailed statistical exploration of crime trends in Chicago from 2001 to 2023, employing data from the Chicago Police Department’s publicly available crime database. The study aims to elucidate the patterns, distribution, and variations in crime across different types and locations, providing a comprehensive picture of the city’s crime landscape through advanced data analytics and visualization techniques. Using exploratory data analysis (EDA), we identified significant insights into crime trends, including the prevalence of theft and battery, the impact of seasonal changes on crime rates, and spatial concentrations of criminal activities. The research leveraged a Power BI dashboard to visually represent crime data, facilitating an intuitive understanding of complex patterns and enabling dynamic interaction with the dataset. Key findings highlight notable disparities in crime occurrences by type, location, and time, offering a granular view of crime hotspots and temporal trends. Additionally, the study examines clearance rates, revealing variations in the resolution of cases across different crime categories. This analysis not only sheds light on the current state of urban safety but also serves as a critical tool for policymakers and law enforcement agencies to develop targeted interventions. The paper concludes with recommendations for enhancing public safety strategies and suggests directions for future research, emphasizing the need for continuous data-driven approaches to effectively address and mitigate urban crime. This study contributes to the broader discourse on urban safety, crime prevention, and the role of data analytics in public policy and community well-being.展开更多
Every day,the media reports tons of crimes that are considered by a large number of users and accumulate on a regular basis.Crime news exists on the Internet in unstructured formats such as books,websites,documents,an...Every day,the media reports tons of crimes that are considered by a large number of users and accumulate on a regular basis.Crime news exists on the Internet in unstructured formats such as books,websites,documents,and journals.From such homogeneous data,it is very challenging to extract relevant information which is a time-consuming and critical task for the public and law enforcement agencies.Keyword-based Information Retrieval(IR)systems rely on statistics to retrieve results,making it difficult to obtain relevant results.They are unable to understandthe user’s query and thus facewordmismatchesdue to context changes andthe inevitable semanticsof a given word.Therefore,such datasets need to be organized in a structured configuration,with the goal of efficiently manipulating the data while respecting the semantics of the data.An ontological semantic IR systemis needed that can find the right investigative information and find important clues to solve criminal cases.The semantic system retrieves information in view of the similarity of the semantics among indexed data and user queries.In this paper,we develop anontology-based semantic IRsystemthat leverages the latest semantic technologies including resource description framework(RDF),semantic protocol and RDF query language(SPARQL),semantic web rule language(SWRL),and web ontology language(OWL).We have conducted two experiments.In the first experiment,we implemented a keyword-based textual IR systemusing Apache Lucene.In the second experiment,we implemented a semantic systemthat uses ontology to store the data and retrieve precise results with high accuracy using SPARQL queries.The keyword-based system has filtered results with 51%accuracy,while the semantic system has filtered results with 95%accuracy,leading to significant improvements in the field and opening up new horizons for researchers.展开更多
The objective of crime prediction,one of the most important technologies in social computing,is to extract useful information from many existing criminal records to predict the next process-related crime.It can aid th...The objective of crime prediction,one of the most important technologies in social computing,is to extract useful information from many existing criminal records to predict the next process-related crime.It can aid the police in obtaining criminal information and warn the public to be vigilant in certain areas.With the rapid growth of big data,the Internet of Things,and other technologies,as well as the increasing use of artificial intelligence in forecasting models,crime prediction models based on deep learning techniques are accelerating.Therefore,it is necessary to classify the existing crime prediction algorithms and compare in depth the attributes and conditions that play an essential role in the analysis of crime prediction algorithms.Existing crime prediction methods can be roughly divided into two categories:those based on conventional machine learning and those based on contemporary deep learning.This survey analyses the fundamental theories and procedures.The most frequently used data sets are then enumerated,and the fundamental procedures of various algorithms are also analyzed in this paper.In light of the insufficient scale of existing data in this field,the ambiguity of data types used to predict crimes,and the absence of public data sets that have a significant impact on the research of algorithm models,this survey proposes the construction of a machine learning-based big data research model to address these issues.Future researchers who will enter this field are provided with a guide to the direction of future research development.展开更多
The increasing rate of insecurity in Nigeria, especially the southwest requires a paradigm shift from popular approach to crime hotspots detection. This study employed geospatial technologies to integrate spatio-tempo...The increasing rate of insecurity in Nigeria, especially the southwest requires a paradigm shift from popular approach to crime hotspots detection. This study employed geospatial technologies to integrate spatio-temporal crime, social media and field observation data from the communities in all the six states in the southwest to develop crime hotspots that can serve as preliminary information to assist in allocating resources for crime control and prevention. Historical crime data from January 1972 to April, 2021 were compiled and updated with rigorous field survey in September, 2021. The field data were encoded, input to the SPSS 17 and analyzed using descriptive statistics and multivariate analysis. A total 936 crime locations data were geolocated and exported to ArcGIS 10.5 for spatial mapping using point map operation and further imported to e-Spatial web-based and QGIS for the generation of hotspot map using heatmap tool. The results revealed that armed robbery, assassination and cultism were more pronounced in Lagos and Ogun States. Similarly, high incidences of farmers/herdsmen conflicts are observed in Oyo and Osun States. Increasing incidences of kidnapping are common in all the south-western states but very prominent in Ondo, Lagos and Oyo States. Most of the violent crime incidents took place along the highways, with forests being their hideouts. Violent crimes are dominantly caused by high rate of unemployment while farmer/herdsmen conflicts were majorly triggered by the scarcity of grazing fields and destruction of arable crops. The conflicts have resulted in the increasing cases of rape and disruption of social group, intake of hard drugs, cult-related activities, low income and revenue generation, and displacement of farmers and infrastructural damages. The study advocates regular retraining and equipping of security agents, establishment of cattle ranch, and installation of sophisticated IP Camera at the crime hotspots to assist in real-time crime monitoring and management.展开更多
The study examines the Spatial Pattern and Distribution of Crime in Suleja LGA, Niger State, Nigeria. The study used GIS and statistical methods to analyse the pattern and distribution of crime incidence in the study ...The study examines the Spatial Pattern and Distribution of Crime in Suleja LGA, Niger State, Nigeria. The study used GIS and statistical methods to analyse the pattern and distribution of crime incidence in the study area. The records of each crime incidence were geocoded. Microsoft Excel was used to collate and organise the crime entries before they were imported into the ArcGIS Pro 2.0 environment. A geodatabase was created where the spatial and aspatial data were encoded and geospatial analysis was performed. The study reveals that the crime distribution pattern is generally clustered with a Global Moran’s I index of 0.097, a Z-score of 1.87, and a P-value < 0.06. Furthermore, the study reveals that armed robbery (61), kidnapping (40), car theft (33), culpable homicide (31), rape (29), and robbery (13) cases rank the highest in crime rate. Equally, findings of the study show that Chaza, Kwamba, Madalla, Suleja central, and Gaboda are the major crime hotspot zones at 90% confidence, as analysed using the Getis-Ord Gi* (Hot spot analysis) spatial statistics tool in ArcGIS Pro 2.0. The research therefore recommends that more effort be put into fighting crime, especially in areas where there are low-security formations, as they mostly have the highest record of crimes committed. Also, the patrol units should be equipped with GPS for better surveillance and real-time tracking of criminal activities.展开更多
The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation...The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation for the establishment of prevention and control systems to protect citizens’property.However,the deep-learning methods applied in the monitoring and early warning of new cyber-telecom crime platforms have some apparent drawbacks.For instance,the methods suffer from data-distribution differences and tremendous manual efforts spent on data labeling.Therefore,a monitoring and early warning method for new cyber-telecom crime platforms based on the BERT migration learning model is proposed.This method first identifies the text data and their tags,and then performs migration training based on a pre-training model.Finally,the method uses the fine-tuned model to predict and classify new cyber-telecom crimes.Experimental analysis on the crime data collected by public security organizations shows that higher classification accuracy can be achieved using the proposed method,compared with the deep-learning method.展开更多
文摘Crime scene investigation(CSI)image is key evidence carrier during criminal investiga-tion,in which CSI image retrieval can assist the public police to obtain criminal clues.Moreover,with the rapid development of deep learning,data-driven paradigm has become the mainstreammethod of CSI image feature extraction and representation,and in this process,datasets provideeffective support for CSI retrieval performance.However,there is a lack of systematic research onCSI image retrieval methods and datasets.Therefore,we present an overview of the existing worksabout one-class and multi-class CSI image retrieval based on deep learning.According to theresearch,based on their technical functionalities and implementation methods,CSI image retrievalis roughly classified into five categories:feature representation,metric learning,generative adversar-ial networks,autoencoder networks and attention networks.Furthermore,We analyzed the remain-ing challenges and discussed future work directions in this field.
文摘This paper presents a detailed statistical exploration of crime trends in Chicago from 2001 to 2023, employing data from the Chicago Police Department’s publicly available crime database. The study aims to elucidate the patterns, distribution, and variations in crime across different types and locations, providing a comprehensive picture of the city’s crime landscape through advanced data analytics and visualization techniques. Using exploratory data analysis (EDA), we identified significant insights into crime trends, including the prevalence of theft and battery, the impact of seasonal changes on crime rates, and spatial concentrations of criminal activities. The research leveraged a Power BI dashboard to visually represent crime data, facilitating an intuitive understanding of complex patterns and enabling dynamic interaction with the dataset. Key findings highlight notable disparities in crime occurrences by type, location, and time, offering a granular view of crime hotspots and temporal trends. Additionally, the study examines clearance rates, revealing variations in the resolution of cases across different crime categories. This analysis not only sheds light on the current state of urban safety but also serves as a critical tool for policymakers and law enforcement agencies to develop targeted interventions. The paper concludes with recommendations for enhancing public safety strategies and suggests directions for future research, emphasizing the need for continuous data-driven approaches to effectively address and mitigate urban crime. This study contributes to the broader discourse on urban safety, crime prevention, and the role of data analytics in public policy and community well-being.
文摘Every day,the media reports tons of crimes that are considered by a large number of users and accumulate on a regular basis.Crime news exists on the Internet in unstructured formats such as books,websites,documents,and journals.From such homogeneous data,it is very challenging to extract relevant information which is a time-consuming and critical task for the public and law enforcement agencies.Keyword-based Information Retrieval(IR)systems rely on statistics to retrieve results,making it difficult to obtain relevant results.They are unable to understandthe user’s query and thus facewordmismatchesdue to context changes andthe inevitable semanticsof a given word.Therefore,such datasets need to be organized in a structured configuration,with the goal of efficiently manipulating the data while respecting the semantics of the data.An ontological semantic IR systemis needed that can find the right investigative information and find important clues to solve criminal cases.The semantic system retrieves information in view of the similarity of the semantics among indexed data and user queries.In this paper,we develop anontology-based semantic IRsystemthat leverages the latest semantic technologies including resource description framework(RDF),semantic protocol and RDF query language(SPARQL),semantic web rule language(SWRL),and web ontology language(OWL).We have conducted two experiments.In the first experiment,we implemented a keyword-based textual IR systemusing Apache Lucene.In the second experiment,we implemented a semantic systemthat uses ontology to store the data and retrieve precise results with high accuracy using SPARQL queries.The keyword-based system has filtered results with 51%accuracy,while the semantic system has filtered results with 95%accuracy,leading to significant improvements in the field and opening up new horizons for researchers.
文摘The objective of crime prediction,one of the most important technologies in social computing,is to extract useful information from many existing criminal records to predict the next process-related crime.It can aid the police in obtaining criminal information and warn the public to be vigilant in certain areas.With the rapid growth of big data,the Internet of Things,and other technologies,as well as the increasing use of artificial intelligence in forecasting models,crime prediction models based on deep learning techniques are accelerating.Therefore,it is necessary to classify the existing crime prediction algorithms and compare in depth the attributes and conditions that play an essential role in the analysis of crime prediction algorithms.Existing crime prediction methods can be roughly divided into two categories:those based on conventional machine learning and those based on contemporary deep learning.This survey analyses the fundamental theories and procedures.The most frequently used data sets are then enumerated,and the fundamental procedures of various algorithms are also analyzed in this paper.In light of the insufficient scale of existing data in this field,the ambiguity of data types used to predict crimes,and the absence of public data sets that have a significant impact on the research of algorithm models,this survey proposes the construction of a machine learning-based big data research model to address these issues.Future researchers who will enter this field are provided with a guide to the direction of future research development.
文摘The increasing rate of insecurity in Nigeria, especially the southwest requires a paradigm shift from popular approach to crime hotspots detection. This study employed geospatial technologies to integrate spatio-temporal crime, social media and field observation data from the communities in all the six states in the southwest to develop crime hotspots that can serve as preliminary information to assist in allocating resources for crime control and prevention. Historical crime data from January 1972 to April, 2021 were compiled and updated with rigorous field survey in September, 2021. The field data were encoded, input to the SPSS 17 and analyzed using descriptive statistics and multivariate analysis. A total 936 crime locations data were geolocated and exported to ArcGIS 10.5 for spatial mapping using point map operation and further imported to e-Spatial web-based and QGIS for the generation of hotspot map using heatmap tool. The results revealed that armed robbery, assassination and cultism were more pronounced in Lagos and Ogun States. Similarly, high incidences of farmers/herdsmen conflicts are observed in Oyo and Osun States. Increasing incidences of kidnapping are common in all the south-western states but very prominent in Ondo, Lagos and Oyo States. Most of the violent crime incidents took place along the highways, with forests being their hideouts. Violent crimes are dominantly caused by high rate of unemployment while farmer/herdsmen conflicts were majorly triggered by the scarcity of grazing fields and destruction of arable crops. The conflicts have resulted in the increasing cases of rape and disruption of social group, intake of hard drugs, cult-related activities, low income and revenue generation, and displacement of farmers and infrastructural damages. The study advocates regular retraining and equipping of security agents, establishment of cattle ranch, and installation of sophisticated IP Camera at the crime hotspots to assist in real-time crime monitoring and management.
文摘The study examines the Spatial Pattern and Distribution of Crime in Suleja LGA, Niger State, Nigeria. The study used GIS and statistical methods to analyse the pattern and distribution of crime incidence in the study area. The records of each crime incidence were geocoded. Microsoft Excel was used to collate and organise the crime entries before they were imported into the ArcGIS Pro 2.0 environment. A geodatabase was created where the spatial and aspatial data were encoded and geospatial analysis was performed. The study reveals that the crime distribution pattern is generally clustered with a Global Moran’s I index of 0.097, a Z-score of 1.87, and a P-value < 0.06. Furthermore, the study reveals that armed robbery (61), kidnapping (40), car theft (33), culpable homicide (31), rape (29), and robbery (13) cases rank the highest in crime rate. Equally, findings of the study show that Chaza, Kwamba, Madalla, Suleja central, and Gaboda are the major crime hotspot zones at 90% confidence, as analysed using the Getis-Ord Gi* (Hot spot analysis) spatial statistics tool in ArcGIS Pro 2.0. The research therefore recommends that more effort be put into fighting crime, especially in areas where there are low-security formations, as they mostly have the highest record of crimes committed. Also, the patrol units should be equipped with GPS for better surveillance and real-time tracking of criminal activities.
基金supported in part by the Basic Public Welfare Research Program of Zhejiang Province under Grant LGF20G030001.
文摘The network is a major platform for implementing new cyber-telecom crimes.Therefore,it is important to carry out monitoring and early warning research on new cyber-telecom crime platforms,which will lay the foundation for the establishment of prevention and control systems to protect citizens’property.However,the deep-learning methods applied in the monitoring and early warning of new cyber-telecom crime platforms have some apparent drawbacks.For instance,the methods suffer from data-distribution differences and tremendous manual efforts spent on data labeling.Therefore,a monitoring and early warning method for new cyber-telecom crime platforms based on the BERT migration learning model is proposed.This method first identifies the text data and their tags,and then performs migration training based on a pre-training model.Finally,the method uses the fine-tuned model to predict and classify new cyber-telecom crimes.Experimental analysis on the crime data collected by public security organizations shows that higher classification accuracy can be achieved using the proposed method,compared with the deep-learning method.