期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Infinitely many radial solutions to elliptic prob-lems with critical Sobolev and Hardy terms 被引量:1
1
作者 TANG ZhongWei School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China 《Science China Mathematics》 SCIE 2008年第9期1609-1618,共10页
Let Ω ? ? N be a ball centered at the origin with radius R > 0 and N ? 7, 2* = $ \frac{{2N}} {{N - 2}} $ . We obtain the existence of infinitely many radial solutions for the Dirichlet problem ?Δu = $ \frac{\mu }... Let Ω ? ? N be a ball centered at the origin with radius R > 0 and N ? 7, 2* = $ \frac{{2N}} {{N - 2}} $ . We obtain the existence of infinitely many radial solutions for the Dirichlet problem ?Δu = $ \frac{\mu } {{|x|^2 }}u + |u|^{2^* - 2} u + \lambda u $ in Ω, u = 0 on ?Ω for suitable positive numbers μ and λ. Such solutions are characterized by the number of their nodes. 展开更多
关键词 nodal solutions COMPACTNESS critical sobolev and Hardy terms 35J60 35B33
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部