Let Ω ? ? N be a ball centered at the origin with radius R > 0 and N ? 7, 2* = $ \frac{{2N}} {{N - 2}} $ . We obtain the existence of infinitely many radial solutions for the Dirichlet problem ?Δu = $ \frac{\mu }...Let Ω ? ? N be a ball centered at the origin with radius R > 0 and N ? 7, 2* = $ \frac{{2N}} {{N - 2}} $ . We obtain the existence of infinitely many radial solutions for the Dirichlet problem ?Δu = $ \frac{\mu } {{|x|^2 }}u + |u|^{2^* - 2} u + \lambda u $ in Ω, u = 0 on ?Ω for suitable positive numbers μ and λ. Such solutions are characterized by the number of their nodes.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10526008)
文摘Let Ω ? ? N be a ball centered at the origin with radius R > 0 and N ? 7, 2* = $ \frac{{2N}} {{N - 2}} $ . We obtain the existence of infinitely many radial solutions for the Dirichlet problem ?Δu = $ \frac{\mu } {{|x|^2 }}u + |u|^{2^* - 2} u + \lambda u $ in Ω, u = 0 on ?Ω for suitable positive numbers μ and λ. Such solutions are characterized by the number of their nodes.