The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate,critical pressure ratio,and discharge coefficient.The effec...The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate,critical pressure ratio,and discharge coefficient.The effect of a variation in the cone displacement and liquid content on the critical flow characteristics is examined in detail and it is shown that the former can be used to effectively adjust the critical flow rate.The critical pressure ratio of the considered nozzle is above 0.85,and the critical flow control deviation of the gas flow is within±3%.Liquid flow can reduce the gas critical mass flow rate accordingly,especially for the cases with larger liquid volume and lower inlet pressure.The set of results and conclusions provided are intended to support the optimization of steam injection techniques in the context of heavy oil recovery processes.展开更多
China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable prod...China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable productionof these gas wells, plunger-lift technology plays an important role. In order to fully understand and accurately graspthe drainage and gas production mechanisms of plunger-lift, a mechanical model of plunger-liquid column uplift inthe plunger-lift process was established, focusing on conventional plunger-lift systems and representative wellboreconfigurations in the Linxing region. The operating casing pressure of the plunger-lift process and the calculationmethod for the maximum daily fluid production rate based on the work regime with the highest fluid recovery ratewere determined. For the first time, the critical flow rate method was proposed as a constraint for the maximumliquid-carrying capacity of the plunger-lift, and liquid-carrying capacity charts for conventional plunger-lift withdifferent casing sizes were developed. The results showed that for 23/8 casing plunger-lift, with a well depth ofshallower than 808 m, the maximum drainage rate was 33 m3/d;for 27/8 casing plunger-lift, with a well depth ofshallower than 742 m, the maximum drainage rate was 50.15 m3/d;for 31/2 casing plunger-lift, with a well depthof shallower than 560 m, the maximum drainage rate was 75.14 m3/d. This research provides a foundation for thescientific selection of plunger-lift technology and serves as a decision-making reference for developing reasonableplunger-lift work regimes.展开更多
The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes o...The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well.The results show that the configuration with an inclined section is the most susceptible to liquid loading.Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles,pressure and liquid volume(taking the equal liquid volume at inlet and outlet as the criterion for judging on the critical state).According to these results,the related angle of the inclined section ranges from 45°to 60°.Finally,a modified approach based on the Belfroid model has been used to predict the critical gas flow rate for the inclined section.After comparison with field data,this modified model shows an accuracy of 96%,indicating that it has better performances with respect to other models used in the past to predict liquid loading.展开更多
This article proposes a new model for calculating the gas-well liquid loading capacity, which is critical to an accurate prediction of gas well production. Based on analysis of flow regime during the gas well producti...This article proposes a new model for calculating the gas-well liquid loading capacity, which is critical to an accurate prediction of gas well production. Based on analysis of flow regime during the gas well production with water, which is regarded as many single particles in the model, with the shape of particles being assumed as disk-like ellipsoid instead of traditional sphere and changing according to the forces exerted on them, the influences of non-Darcy flow, compressibility, and non-sphere shape on friction factor are analyzed. The differences between the new model and other models are discussed and a new formula for calculating the critical flow rate is obtained. The calculation results and a comparison with other two models show that the new model is more consistent with the actual situation and is practical.展开更多
基金The authors would like to acknowledge the support provided by the National Natural Science Foundation of China(No.62173049)the open fund of the Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(Grant K2021-17).
文摘The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate,critical pressure ratio,and discharge coefficient.The effect of a variation in the cone displacement and liquid content on the critical flow characteristics is examined in detail and it is shown that the former can be used to effectively adjust the critical flow rate.The critical pressure ratio of the considered nozzle is above 0.85,and the critical flow control deviation of the gas flow is within±3%.Liquid flow can reduce the gas critical mass flow rate accordingly,especially for the cases with larger liquid volume and lower inlet pressure.The set of results and conclusions provided are intended to support the optimization of steam injection techniques in the context of heavy oil recovery processes.
基金the Fundamental Research Funds for the Central Universities of China(No.20CX02308A)CNOOC Project(No.ZX2022ZCCYF3835).
文摘China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable productionof these gas wells, plunger-lift technology plays an important role. In order to fully understand and accurately graspthe drainage and gas production mechanisms of plunger-lift, a mechanical model of plunger-liquid column uplift inthe plunger-lift process was established, focusing on conventional plunger-lift systems and representative wellboreconfigurations in the Linxing region. The operating casing pressure of the plunger-lift process and the calculationmethod for the maximum daily fluid production rate based on the work regime with the highest fluid recovery ratewere determined. For the first time, the critical flow rate method was proposed as a constraint for the maximumliquid-carrying capacity of the plunger-lift, and liquid-carrying capacity charts for conventional plunger-lift withdifferent casing sizes were developed. The results showed that for 23/8 casing plunger-lift, with a well depth ofshallower than 808 m, the maximum drainage rate was 33 m3/d;for 27/8 casing plunger-lift, with a well depth ofshallower than 742 m, the maximum drainage rate was 50.15 m3/d;for 31/2 casing plunger-lift, with a well depthof shallower than 560 m, the maximum drainage rate was 75.14 m3/d. This research provides a foundation for thescientific selection of plunger-lift technology and serves as a decision-making reference for developing reasonableplunger-lift work regimes.
基金The authors like to express appreciation to the support given by the major national science and technology special project:Research and Application of Key Technologies for Oil Production and Gas Recovery in Complex Carbonate Reservoirs in Central Asia and Middle East(2017ZX05030-005)Scientific Research Startup Fund Project for Introducing Talent of Kunming University of Science and Technology(KKSY20180502).
文摘The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well.The results show that the configuration with an inclined section is the most susceptible to liquid loading.Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles,pressure and liquid volume(taking the equal liquid volume at inlet and outlet as the criterion for judging on the critical state).According to these results,the related angle of the inclined section ranges from 45°to 60°.Finally,a modified approach based on the Belfroid model has been used to predict the critical gas flow rate for the inclined section.After comparison with field data,this modified model shows an accuracy of 96%,indicating that it has better performances with respect to other models used in the past to predict liquid loading.
文摘This article proposes a new model for calculating the gas-well liquid loading capacity, which is critical to an accurate prediction of gas well production. Based on analysis of flow regime during the gas well production with water, which is regarded as many single particles in the model, with the shape of particles being assumed as disk-like ellipsoid instead of traditional sphere and changing according to the forces exerted on them, the influences of non-Darcy flow, compressibility, and non-sphere shape on friction factor are analyzed. The differences between the new model and other models are discussed and a new formula for calculating the critical flow rate is obtained. The calculation results and a comparison with other two models show that the new model is more consistent with the actual situation and is practical.