期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Effect of Cross-flow Velocity on the Critical Flux of Ceramic Membrane Filtration as a Pre-treatment for Seawater Desalination 被引量:3
1
作者 崔朝亮 彭文博 +2 位作者 范益群 邢卫红 徐南平 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期341-347,共7页
Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane system... Pre-treatment, which supplies a stable, high-quality feed for reverse osmosis (RO) membranes, is a criti- cal step for successful operation in a seawater reverse osmosis plant. In this study, ceramic membrane systems were employed as pre-treatment for seawater desalination. A laboratory experiment was performed to investigate the effect of the cross-flow velocity on the critical flux and consequently to optimize the permeate flux. Then a pilot test was performed to investigate the long-term performance. The result shows that there is no significant effect of the cross-flow velocity on the critical flux when the cross-flow velocity varies in laminar flow region only or in turbulent flow region only, but the effect is distinct when the cross-flow velocity varies in the transition region. The membrane fouling is slight at the permeate flux of 150 L·m^-2·h^-1 and the system is stable, producing a high-quality feed (the turbidity and silt density index are less than 0.1 NTU and 3.0, respectively) for RO to run for 2922.4 h without chemical cleaning. Thus the ceramic membranes are suitable to filtrate seawater as the pre-treatment for RO. 展开更多
关键词 ceramic membrane seawater desalination pre-treatment critical flux
下载PDF
Critical Heat Flux with Subcooled Flowing Water in Tubes for Pressures from Atmosphere to Near-Critical Point 被引量:1
2
作者 Yuzhou Chen Keming Bi +2 位作者 Minfu Zhao Chunsheng Yang Kaiwen Du 《Journal of Energy and Power Engineering》 2016年第4期211-222,共12页
During last 45 years, two groups of the experimental data on critical heat flux were obtained in bare tubes, covering the pressures from atmosphere to near-critical point. One group of the data were obtained in the in... During last 45 years, two groups of the experimental data on critical heat flux were obtained in bare tubes, covering the pressures from atmosphere to near-critical point. One group of the data were obtained in the inner diameter of 2.32, 5.16, 8.05, 10.0 and 16.0 mm, respectively, with the ranges of pressure of 0.1-1.92 MPa, velocity of 1.47-23.3 m/s, local subcooling of 3.7-108.7 ℃ and heat flux of up to 38.3 MW/m2. Another group of the data were obtained in the inner diameter of 4.62, 7.98 and 10.89 mm, respectively, with the ranges of pressure of 1.7-20.6 MPa, mass flux of 454-4,055 kg/(m2.s) and inlet subcooling of 53-361 ℃. The results showed complicated effects of the pressure, mass flux, subcooling and diameter on the critical heat flux. They were formulated by two empirical correlations. A mechanistic model on the limit of heat transfer capability from the bubbly layer to the subcooled core was also proposed for all the results. 展开更多
关键词 critical heat flux near-critical pressure ATMOSPHERE subcooled water.
下载PDF
Improvement of Critical Heat Flux Performance by Wire Spacer 被引量:1
3
作者 Dan Tri Le Minom Takahashi 《Journal of Energy and Power Engineering》 2015年第10期844-851,共8页
In order to investigate the coolability of a tight lattice core in BWR (boiling water reactors), an experiment of CHF (critical heat flux) was conducted using a single heater pin flow channel with and without a wi... In order to investigate the coolability of a tight lattice core in BWR (boiling water reactors), an experiment of CHF (critical heat flux) was conducted using a single heater pin flow channel with and without a wire spacer with the mass flux ranged from 200 kg/(m2.s) to 600 kg/(m2·s), the inlet temperature from 50 ℃ to 90 ℃ at the pressure of 0.1 MPa. The results of CHF values were compared between two different types of heater pin with and without the wire spacer. The heat removability of flow channel was improved by the wire spacer in comparison with the heater pin flow channel without the wire spacer. The CHF value was higher in the heater pin channel with the wire spacer than in that without the wire spacer. 展开更多
关键词 critical heat flux tight lattice core boiling two-phase flow wire spacer.
下载PDF
Accurate prediction of the critical heat flux for pool boiling on the heater substrate
4
作者 Fengxun Hai Wei Zhu +1 位作者 Xiaoyi Yang Yuan Deng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期476-482,共7页
While the influence of liquid qualities,surface morphology,and operating circumstances on critical heat flux(CHF)in pool boiling has been extensively studied,the effect of the heater substrate has not.Based on the for... While the influence of liquid qualities,surface morphology,and operating circumstances on critical heat flux(CHF)in pool boiling has been extensively studied,the effect of the heater substrate has not.Based on the force balance analysis,a theoretical model has been developed to accurately predict the CHF in pool boiling on a heater substrate.An analytical expression for the CHF of a heater substrate is obtained in terms of the surface thermophysical property.It is indicated that the ratio of thermal conductivity(k)to the product of density(ρ)and specific heat(cp)is an essential substrate property that influences the CHF.By modifying the well-known force-balance-based CHF model(Kandlikar model),the thermal characteristics of the substrate are taken into consideration.The bias of predicted CHF values are within 5%compared with the experimental results. 展开更多
关键词 boiling heat transfer kandlikar model critical heat flux heater substrate
下载PDF
Critical Heat Flux in Forced Convective Boiling with a Wall Jet
5
作者 王迅 《Transactions of Tianjin University》 EI CAS 2004年第1期63-66,共4页
The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60... The critical heat flux (CHF) in the forced convective boiling with a wall jet has been investigated.The experiments of CHF with a wall jet have been performed over a wide range of ρ l/ρ g=6.6-1 603 and ΔT sub =0-60 K. The mechanism on CHF is discussed and a CHF model based on heat balance in sublayer can provide a good clue for analyzing and deriving CHF.Finally,a generalized correlation is presented, which can predict CHF for saturated and subcooled conditions. 展开更多
关键词 critical heat flux wall jet saturated liquid subcooled liquid
下载PDF
The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model
6
作者 张镜洋 韩乐 +2 位作者 常海萍 刘楠 许铁军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第2期190-196,共7页
An accurate critical heat flux(CHF) prediction method is the key factor for realizing the steady-state operation of a water-cooled divertor that works under one-sided high heating flux conditions.An improved CHF pre... An accurate critical heat flux(CHF) prediction method is the key factor for realizing the steady-state operation of a water-cooled divertor that works under one-sided high heating flux conditions.An improved CHF prediction method based on Euler's homogeneous model for flow boiling combined with realizable k-ε model for single-phase flow is adopted in this paper in which time relaxation coefficients are corrected by the Hertz-Knudsen formula in order to improve the calculation accuracy of vapor-liquid conversion efficiency under high heating flux conditions.Moreover,local large differences of liquid physical properties due to the extreme nonuniform heating flux on cooling wall along the circumference direction are revised by formula IAPWSIF97.Therefore,this method can improve the calculation accuracy of heat and mass transfer between liquid phase and vapor phase in a CHF prediction simulation of water-cooled divertors under the one-sided high heating condition.An experimental example is simulated based on the improved and the uncorrected methods.The simulation results,such as temperature,void fraction and heat transfer coefficient,are analyzed to achieve the CHF prediction.The results show that the maximum error of CHF based on the improved method is 23.7%,while that of CHF based on uncorrected method is up to 188%,as compared with the experiment results of Ref.[12].Finally,this method is verified by comparison with the experimental data obtained by International Thermonuclear Experimental Reactor(ITER),with a maximum error of 6% only.This method provides an efficient tool for the CHF prediction of water-cooled divertors. 展开更多
关键词 water-cooled divertor critical heat flux numerical simulation Euler homogeneous model
下载PDF
Experimental Studies on Critical Heat Flux in a Uniformly Heated Vertical Tube at Low Pressure and Flowrates
7
作者 Husham M. Ahmed 《Journal of Energy and Power Engineering》 2012年第1期60-69,共10页
Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical hea... Investigations into critical beat flux at low flow and pressure conditions are of particular interest when predicting the nuclear reactor core behavior during Loss of Coolant accident (LOCA). Therefore, critical heat flux (CHF) has been investigated in a uniformly heated vertical round tube at two low system pressures and six low water flowrates. The results have been compared with two correlations which have different approaches and CHF look-up table. Good agreements have been obtained for the three comparisons at the lower sets of mass fluxes. The Bowring correlation was found to be the best to correlate the experimental results with Root Mean Square Error RMSE of 0.54% and 0.56% for the 5 bar and 15 bar system pressure respectively. A comparisons with the Shim and Lee correlation yielded RMSE of 0.23% and 5.74% for the two system pressure respectively. When the look-up table of Groeneveld et al. was used, RMES of 0.55% and 25.2% was obtained for the two system pressure respectively. 展开更多
关键词 critical heat flux DRYOUT BURNOUT subcooled boiling LOCA.
下载PDF
Enhancement of Critical Heat Flux in Tight Rod Bundle with Wire Spacer
8
作者 Dan Tri Le Minoru Takahashi 《Journal of Energy and Power Engineering》 2016年第2期109-115,共7页
The experiment of CHF (critical heat flux) was conducted for water boiling two-phase flow in three-pin tight rod bundle. The effects of with and without wire spacers and the pitch to diameter ratio p/d on CHF were i... The experiment of CHF (critical heat flux) was conducted for water boiling two-phase flow in three-pin tight rod bundle. The effects of with and without wire spacers and the pitch to diameter ratio p/d on CHF were investigated under the conditions of mass flux range 250-430 kg/(m2·s), inlet temperature from 70 ℃ to 92 ℃ and the pressure of 0.1 MPa. The CHF was enhanced by wire spacers in comparison with the results of CHF without wire spacers. The CHF was enhanced by reducing thep/dfrom 1.18 to 1.10 under the same flow rate condition, although it did not change appreciably with the change ofp/d under the same mass flux condition. 展开更多
关键词 critical heat flux tight lattice core boiling two-phase flow wire spacer.
下载PDF
Research on DTC System with Variable Flux for Switched Reluctance Motor 被引量:2
9
作者 Xianchao Zhao Aide.Xu Wen Zhang 《CES Transactions on Electrical Machines and Systems》 2017年第2期199-206,共8页
When switched reluctance motor(SRM)is in the status of the traditional direct torque control(DTC)system,due to the high saturation nonlinearity of the electromagnetic relationships of switched reluctance motors,the to... When switched reluctance motor(SRM)is in the status of the traditional direct torque control(DTC)system,due to the high saturation nonlinearity of the electromagnetic relationships of switched reluctance motors,the torque ripple and the stator phase current are larger.In order to resolve the above problems,through the analysis and deduction for SRM flux model and the influence of characteristics of flux and speed on torque ripple,this paper presents a variable-flux control strategy with the three closed-loop structure based on the critical flux supersaturated speed.And a DTC system of SRM with variable flux and three closed-loop is built up in Matlab/simulink.Moreover,the DSP hardware experiment platform based on the TMS320F2812 is established to validate the performance of the improved algorithm.The simulation and experimental results show that the new scheme has an obvious effect on torque ripple reduction,and the three-phase stator current is obviously reduced,which greatly reduces the stator winding copper consumption during the operation of SRM.Moreover,the improved system has good system stability. 展开更多
关键词 critical flux supersaturated speed direct torque control switched reluctance motor three closed-loop variable flux
下载PDF
低碳钢表面氧化效应对加热面朝下CHF的影响
10
作者 叶伟杰 李松蔚 +3 位作者 王来顺 吴帅 李孝佳 鄢炳火 《中山大学学报(自然科学版)(中英文)》 CAS CSCD 北大核心 2023年第4期102-107,共6页
先进压水堆压力容器下封头采用材料为低碳钢SA508,其表面容易氧化,可能对堆内熔融物滞留(IVR,in-vessel retention)策略临界热流密度(CHF,critical heat flux)产生显著影响,从而影响该策略安全余量。针对这一问题,本文首先研究了低碳钢S... 先进压水堆压力容器下封头采用材料为低碳钢SA508,其表面容易氧化,可能对堆内熔融物滞留(IVR,in-vessel retention)策略临界热流密度(CHF,critical heat flux)产生显著影响,从而影响该策略安全余量。针对这一问题,本文首先研究了低碳钢SA508不同程度表面氧化对加热面朝下CHF的影响,其次研究了在低碳钢表面氧化情况下纳米流体强化CHF效果。结果发现,低碳钢SA508表面氧化对加热面朝下池式沸腾CHF具有显著影响,随着氧化程度的加深,CHF快速增长并最终达到稳定,表面完全氧化情况下CHF稳定值是表面轻微氧化情况下的2倍左右;将完全氧化低碳钢表面放入纳米流体中进行沸腾实验,发现纳米流体可以继续提高完全氧化表面CHF但效果大幅减弱,CHF增强原因在于表面纳米颗粒沉积层具有很强的吸水性。 展开更多
关键词 IVR(in-vessel retention)策略 表面氧化 纳米流体 CHF(critical heat flux)增强效应
下载PDF
HIGH EFFICIENCY COOLING TECHNOLOGY BASED ON GREEN MANUFACTURING 被引量:1
11
作者 安庆龙 傅玉灿 +3 位作者 徐九华 王云峰 任守良 徐鸿钧 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第3期230-233,共4页
Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficienc... Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficiency cooling technology-cryogenic pneumatic mist jet impinging cooling (CPMJI) technology is presented. For obtaining the best cooling effect, a little quantity of coolant is carried by high speed cryogenic air (-20 C ) and reaches the machining zone in the form of mist jet to enhance heat transfer. Experimental results indicate that under the conditions of 40 m/s in the jet impinging speed and 10 mm in the jet impinging distance, the critical heat flux(CHF) nearly reaches 6× 10^7 W/m^2, more than six times of the CHF of the grinding burn with a value of (8~10)×10^6 W/m^2. 展开更多
关键词 high efficiency cooling mist jet impinging enhancing heat transfer critical heat flux
下载PDF
Liquid film dryout model for predicting critical heat flux in annular two-phase flow 被引量:5
12
作者 Bo JIAO Li-min QIU Jun-liang LU Zhi-hua GAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第3期398-417,共20页
Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) ... Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) is one of the most important factors for the system security of engineering applications. Since annular flow is the most common flow pattern in gas-liquid two-phase flow, predicting CHF of annular two-phase flow is more significant. Many studies have shown that the liquid film dryout model is successful for that prediction, and determining the following parameters will exert predominant effects on the accuracy of this model: onset of annular flow, inception criterion for droplets entrainment, entrainment fraction, droplets deposition and entrainment rates. The main theoretical results achieved on the above five parameters are reviewed; also, limitations in the existing studies and problems for further research are discussed. 展开更多
关键词 Annular two-phase flow critical heat flux (CHF) Liquid film dryout Deposition rate Entrainment rate
原文传递
Experimental Investigation on Critical Heat Flux for Water Flowing in a Vertical Uniformly Heated Rifled Tube under Near-critical Pressures 被引量:3
13
作者 XIE Haiyan YANG Dong +2 位作者 ZHAO Yunjie JIANG Huiqing QU Mofeng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第6期527-540,共14页
This study experimentally investigated the critical heat flux(CHF) of departure from nucleate boiling(DNB) of water flowing under near-critical pressures in a 2 m-long vertical upward rifled tube with the size of Φ35... This study experimentally investigated the critical heat flux(CHF) of departure from nucleate boiling(DNB) of water flowing under near-critical pressures in a 2 m-long vertical upward rifled tube with the size of Φ35 × 5.67 mm. Operating conditions included pressures of 18–21 MPa, mass fluxes of 475–1000 kg·m^(-2)·s^(-1), inlet subcooling temperatures of 3–5°C, and wall heat fluxes of 40–960 kW·m^(-2). Tube wall temperature distribution and heat transfer performance in different test conditions were obtained. The effects of the operating parameters on CHF were analyzed. Four heat transfer coefficient correlations were evaluated against our experimental data for further investigation of the two-phase heat transfer characteristics. A heat transfer correlation based on Martinelli number utilized in two-phase region and two empirical correlations used to predict the CHF in rifled tube at near-critical pressures were proposed. Meanwhile, experimental CHF data in rifled tube were compared with six widely used correlations and a CHF look-up table. The CHF enhancement effect in rifled tube is obvious as compared with the CHF data in smooth tube. Results show that DNB occurs at low vapor quality and subcooled region in the rifled tube at near-critical pressures. The increase in pressure leads to the early occurrence of DNB and the decrease in CHF, whereas the increase in mass flux delays the occurrence of DNB and results in the increase in CHF. DNB presents a tendency to move toward the inlet of the rifled tube. At individual operating conditions, DNB and dryout coexist at different sections of the rifled tube. 展开更多
关键词 critical heat flux near-critical pressure rifled tube DNB heat transfer
原文传递
Critical Heat Flux(CHF)Correlations for Subcooled Water Flow Boiling at High Pressure and High Heat Flux 被引量:2
14
作者 LIU Ping GUO Yusheng +6 位作者 DING Wenlong TANG Mingyun SONG Yuntao PENG Xuebing JI Jiadong CHEN Qinghua MAO Xin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期279-293,共15页
The subcooled water flow boiling is beneficial for removing the high heat flux from the divertor in the fusion reactor,for which an accurate critical heat flux(CHF)correlation is necessary.Up to now,there are many CHF... The subcooled water flow boiling is beneficial for removing the high heat flux from the divertor in the fusion reactor,for which an accurate critical heat flux(CHF)correlation is necessary.Up to now,there are many CHF correlations mentioned for subcooled water flow boiling in the open literatures.However,the CHF correlations’accuracies for the prediction of subcooled water flow boiling are not satisfactory at high heat flux and high pressure for reactor divertor.The present paper compiled 1356 CHF experimental data points from 15 independent open literatures and evaluated 10 existing CHF correlations in subcooled water flow boiling.From the evaluation,the W-2 CHF correlation performs best for the experimental CHF data in all existing critical heat flux correlations.However,the predicted mean absolute error(MAE)of the W-2 correlation is not very ideal for all database and the MAE of the W-2 correlation is from 30%to 50%for some database.In order to enhance the CHF prediction accuracy in subcooled water flow boiling at high heat flux and high pressure,the present paper developed a new CHF correlation.Compared with other existing CHF correlations,the new CHF correlation greatly enhances the prediction accuracy over a broad range of pressures and heat fluxes which are desired in the cooling of high heat flux devices,such as those in the fusion reactor divertor.The validation results show that the new correlation has a MAE of 10.05%and a root mean squared error(RMSE)of 16.61%,predicting 68.1%of the entire database within±10%and 81.5%within±15%.The MAE of the new CHF correlation is 7.4%less than that of the best existing one(W-2 correlation),further confirming its superior prediction accuracy and reliability.Besides,the new CHF correlation works well not only for a uniform power profile but also for a non-uniform power profile in subcooled water flow boiling at high pressure and high heat flux. 展开更多
关键词 reactor divertor CORRELATIONS subcooled water flow boiling critical heat flux(CHF) high heat flux high pressure
原文传递
Critical Heat Flux of Blast Furnace Hearth in China 被引量:1
15
作者 Yang-long LI Shu-sen CHENG Chuan CHEN 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第5期382-390,共9页
The critical heat flux surveys of thirteen Chinese blast furnaces were carried out. The mathematical model of hearth bottom was established and the temperature field was simulated by utilizing the method of inverse pr... The critical heat flux surveys of thirteen Chinese blast furnaces were carried out. The mathematical model of hearth bottom was established and the temperature field was simulated by utilizing the method of inverse problem based on the collected parameters and temperature data. The critical heat flux and dangerous critical heat flux of hearth were defined and analyzed as well as the initial and investigative critical heat flux of hearth, and the influences of thermal conductivity and residual thickness of carbon bricks on critical heat flux were discussed. The relationships between critical heat flux of stave and hearth bricks were also compared. It is found that the dangerous critical heat flux of these blast furnaces ranged from 9.38 to 57 kW/mz. Therefore, there was no uniform critical heat flux of hearth due to the structure design, refractory materials selection, construction quality of hearth and other factors. The heat flux should be lower than the critical heat flux with corresponding thickness of carbon bricks to control the erosion of hearth. The critical heat flux of stave would be much lower than that of hearth bricks with the air gap. However, the critical heat flux of stave should be higher than that of hearth bricks when gas existed between furnace shell and staves. 展开更多
关键词 blast furnace HEARTH critical heat flux dangerous critical heat flux EROSION
原文传递
Critical Heat Flux of Boiling Heat Transfer in aModerate Narrow Space
16
作者 Yao-HuaZhan TakashiMasuoka 《Journal of Thermal Science》 SCIE EI CAS CSCD 1998年第2期104-110,共7页
Boiling heat transfer process is analyzed in a moderate narrow space consisted of two horizontal plates.The main difference between this process and the conventional unconfined pool boilillg is the liquidsupply mechan... Boiling heat transfer process is analyzed in a moderate narrow space consisted of two horizontal plates.The main difference between this process and the conventional unconfined pool boilillg is the liquidsupply mechanism which is absolutely prevented by the growth of coalescence bubble along with theheated surface in the narrow space. As a result, the macrolayer becomes thinner due to the evaportion of the individual bubbles within the macrolayer during the period of bubble coalescence, with orwithout dryout that depends on both the gap size of narrow space and the size of heated surface. Fora specified size of the heated surface, the initial thickness of the liquid layer has a critical value whichapproaches a constant while the space height is larger than a critical value. The individual bubblebehaviors and tlie heat transfer can be considered as the same as that in the unconfined pool boiling, ifthe space gap is large. However, the individual bubbles do not generate in the last period of the bubblecoalescence and a lower maximum heat fiux will be resulted if the space gap is reduced. In such a case,the macrolayer is dryout. 展开更多
关键词 boiling heat transfer critical heat flux coalescence bubble
原文传递
High-Quality Critical Heat Flux in Horizontally Coiled Tubes
17
作者 Weimin Ma Mingyuan Zhang Xuejun Chen (State Key Laboratory of Multiphase Flow in PoWer Engineering, Xi’an Jiaotong Universityt Xi’an 710049, China) 《Journal of Thermal Science》 SCIE EI CAS CSCD 1995年第3期205-211,共7页
An investigation on the high-quality dryout in two electrically heated coiled tubes with horizontally helix axes is reported. The temperature profiles both along the tube and around the circumference are measured, and... An investigation on the high-quality dryout in two electrically heated coiled tubes with horizontally helix axes is reported. The temperature profiles both along the tube and around the circumference are measured, and it is found that the temperature profiles around the circumference are not idelltical for the cross-sections at different parts of the coil. The 'local condition hypothesis' seems applicable under present conditions, and the critical heat flux qcr decreases with increasing critical quality xcr The CHF increases as mass velocity and ratio of tube diameter to coil diameter (d/D) increases, and it seems not to be effected by the system pressure. The CHF is larger with coils than that with straight tubes, and the difference increases with increasing mass velocity and d/D. 展开更多
关键词 horizoatally coiled tube critical heat flux.
原文传递
A Numerical Study of the Irradiated Ignition of Obliquely Oriented Thermally-Deformable Polymer
18
作者 Shashank Singh 《Open Journal of Fluid Dynamics》 CAS 2022年第4期277-303,共27页
This study numerically investigates the influence of molten matter dynamics on the gasification and subsequent ignitability of an inclined thermoplastic specimen subjected to localized irradiation heat flux normal to ... This study numerically investigates the influence of molten matter dynamics on the gasification and subsequent ignitability of an inclined thermoplastic specimen subjected to localized irradiation heat flux normal to the surface. A thermoplastic material is modeled as a phase change material with predefined solidification and melting temperatures, respectively, and the gasification process is modeled by the Arrhenius law of molten matter. Gas phase kinetics is not considered for simplicity purposes;instead, the onset of ignition of polymer is estimated on the basis of the critical mass flux concept. According to the numerical results, as the inclination angle becomes steeper (toward the vertical angle), the estimated ignition delay becomes shorter, showing ignition is promoted, whereas it is turned to be difficult to occur when inclination angles are above the vertical angle (>90?) having a longer delay time for the onset of gasification. With careful observation, the thermal interaction between the hot molten matter and unmelted (cold) solid is found to play an important role in gasification. The formation of a bulge due to resolidification to suppress the dripping downstream could be the source to promote ignition. By contrast, the hot molten matter is enforced to detach from the unmelted solid and “freely fall-off” to prohibit ignition for inclination angles beyond 90?. This supports the notion that high-enthalpy caused by the external heating is simply lost because of dripping, and there is less chance of catching fire there. 展开更多
关键词 Numerical Modeling DRIPPING Resolidification GASIFICATION Phase Change Material critical Mass flux
下载PDF
Experimental and Theoretical Study on CHF of a Ultra-Supercritical Circulating Fluidized Bed Boiler Water-Wall Tube at near-Critical Pressures
19
作者 WANG Wenyu MA Zhan +5 位作者 QING Hao NIE Chao YANG Haoyu BI Lingfeng YANG Dong PAN Wenxiao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期166-182,共17页
The experimental and theoretical research on the critical heat flux(CHF)in a uniformly heated water-wall tube of the efficient ultra-supercritical circulating fluidized bed(USCFB)boiler has been conducted.In particula... The experimental and theoretical research on the critical heat flux(CHF)in a uniformly heated water-wall tube of the efficient ultra-supercritical circulating fluidized bed(USCFB)boiler has been conducted.In particular,the experimental pressure varies from 18 MPa to 21 MPa,which is from 0.814Pcr–0.95Pcr(Pcr:critical pressure).The mass flux varies from 310 kg·m^(–2)·s^(–1)to 550 kg·m^(–2)·s^(–1).The inlet sub-cooling temperatures vary from 5°C to 10°C.The material of the tube is 12Cr1MoVg.From experimental investigation,the near critical pressure CHF test data of water are obtained.We find that the CHF mainly occurs when the vapor qualities are less than 0.4,and it occurs earlier(at lower vapor quality)when the pressure is closer to 22.115 MPa or the mass flux is smaller.From the experimental data,a correlation function for the CHF is established via regression and machine learning.Correlations established via machine learning greatly improved the regression accuracy.To study the CHF phenomenon mechanically,a theoretical model is established based on the near-surface bubble crowding model describing the DNB-type CHF.In the development of the CHF model,the friction resistance coefficient is determined according to our test results.By comparison with different experimental results,the near-surface bubble crowding model is well suited to describe DNB-type CHF.The calculation results of the model can provide reference for the optimal design of the USCFB boiler. 展开更多
关键词 circulating fluidized bed critical heat flux near-critical pressure bubble crowding machine learning
原文传递
Nanofluid Heat Transfer Enhancement for Nuclear Reactor Applications
20
作者 J. Buongiomo L.W. Hu 《Journal of Energy and Power Engineering》 2010年第6期1-8,共8页
Colloidal dispersions of nanoparticles are known as 'nanofluids'. Such engineered fluids offer the potential for enhancing heat transfer, particularly boiling heat transfer, while avoiding the drawbacks (e.g., eros... Colloidal dispersions of nanoparticles are known as 'nanofluids'. Such engineered fluids offer the potential for enhancing heat transfer, particularly boiling heat transfer, while avoiding the drawbacks (e.g., erosion, settling, clogging) that hindered the use of particle-laden fluids in the past. At Massachusetts Institute of Technology (MIT), the authors have been studying the heat transfer characteristics of nanofluids for the past five years, with the goal of evaluating their benefits for and applicability to nuclear power systems (e.g., primary coolant, safety systems, severe accident mitigation strategies). This paper summarizes the MIT research in this area with particular emphasis to boiling behavior, including, prominently, the Critical Heat Flux limit and quenching phenomena. 展开更多
关键词 NANOFLUID NANOPARTICLES nuclear plant critical heat flux quenching.
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部