Water seepage in soil is a fundamental problem involving various scientific and engineering fields.According to the literature,low-velocity water seepage in low-permeability porous media,such as clay,does not follow D...Water seepage in soil is a fundamental problem involving various scientific and engineering fields.According to the literature,low-velocity water seepage in low-permeability porous media,such as clay,does not follow Darcy's law,also known as pre-Darcy flow.The formation of immovable water due to water adsorption on the pore wall is believed to be responsible for the formation of pre-Darcy flow.However,this view lacks direct solid evidence.To investigate the pre-Darcy water flow in clay,head permeability experiments are conducted on six clay samples with different densities.The results indicate that water seepage in clay at low hydraulic gradients does not follow Darcy's law.A clear nonlinear relationship between flow velocity and hydraulic gradient is observed.Water flow in clay can be divided into the pre-Darcy flow and Darcy flow regions by the critical hydraulic gradient,which is 10-12 for the Albic soil with dry density between 1.3 g/cm^(3)and 1.8 g/cm^(3).According to the disjoining pressure theory,immovable water due to water adsorption on the pore wall is the primary reason for water flow deviating from Darcy's law in clay.The results indicate that the percentage of movable water ranges from 39.7%to 59.3%for the six samples at a hydraulic gradient of 1.As the hydraulic gradient increases,the percentage of moveable water also increases.Additionally,there is a strong correlation between the percentage of movable water and the variation in hydraulic conductivity with the hydraulic gradient.Furthermore,a quantitative relationship between the percentage of movable water and the hydraulic conductivity has been established.The results of this study suggest that water adsorption on the pore wall not only affects the water movability,but is also closely related to the pre-Darcy flow phenomenon in clay.展开更多
The nonlinear flow properties of Newtonian fluids through crossed fractures are estimated by considering the influences of length,aperture,and surface roughness of fractures.A total of 252 computational runs are perfo...The nonlinear flow properties of Newtonian fluids through crossed fractures are estimated by considering the influences of length,aperture,and surface roughness of fractures.A total of 252 computational runs are performed by creating 36 computational domains,in which the Navier-Stokes equations are solved.The results show that the nonlinear relationship between flow rate and hydraulic gradient follows Forchheimer’s law–based equation.When the hydraulic gradient is small(i.e.,10^(−6)),the streamlines are parallel to the fracture walls,indicating a linear streamline distribution.When the hydraulic gradient is large(i.e.,10^(0)),the streamlines are disturbed by a certain number of eddies,indicating a nonlinear streamline distribution.The patterns of eddy distributions depend on the length,aperture,and surface roughness of fractures.With the increment of hydraulic gradient from 10^(−6) to 10^(0),the ratio of flow rate to hydraulic gradient holds constants and then decreases slightly and finally decreases robustly.The fluid flow experiences a linear flow regime,a weakly nonlinear regime,and a strongly nonlinear regime,respectively.The critical hydraulic gradient ranges from 3.27×10^(−5) to 5.82×10^(−2) when fracture length=20–100mmandmechanical aperture=1–5mm.The joint roughness coefficient plays a negligible role in the variations in critical hydraulic gradient compared with fracture length and/or mechanical aperture.The critical hydraulic gradient decreases with increasing mechanical aperture,following power-law relationships.The parameters in the functions are associated with fracture length.展开更多
A suction caisson can be extracted by applying reverse pumping water,which cannot be regarded as the reverse process of installation because of the dramatically different soil−structure interaction behavior.Model test...A suction caisson can be extracted by applying reverse pumping water,which cannot be regarded as the reverse process of installation because of the dramatically different soil−structure interaction behavior.Model tests were first carried out in this study to investigate the extraction behavior of the modified suction caisson(MSC)and the regular suction caisson(RSC)in sand by reverse pumping water.The effects of the installation ways(suction-assisted or jacking installation)and the reverse pumping rate on the variations of the over-pressure resulting form reverse pumping water were investigated.It was found that neither the RSC nor the MSC can be fully extracted from sand.When the maximum extraction displacement is obtained,the hydraulic gradient of the sand in the suction caisson reaches the critical value,leading to seepage failure.In addition,the maximum extraction displacement decreases with the increasing reverse pumping rate.Under the same reverse pumping rate,the final extraction displacements for the RSC and MSC installed by suction are lower than those for the RSC and MSC installed by jacking.The final extraction displacement of MSC is almost equal to that of the RSC with the same internal compartment length.Based on the force equilibrium,a method of estimating the maximum extraction displacement is proposed.It has been proved that the proposed method can rationally predict the maximum extraction displacement and the corresponding over-pressure.展开更多
Seepage through embankment fill materials is crucial issue in the construction of embankments for irrigation and drainage projects.Proper ground improvement methods should be used to improve the strength and stability...Seepage through embankment fill materials is crucial issue in the construction of embankments for irrigation and drainage projects.Proper ground improvement methods should be used to improve the strength and stability characteristics of soil used as fill material.Utilization of waste plastic materials to enhance the engineering properties of soil is a sustainable approach.Additionally,the use of raw products directly from plastic recycling units in the form of flakes and pellets as soil additives has the potential to further enhance the economic benefits of this method.This study randomly mixed plastic materials with soil for use in the construction of earth embankments,such as river levees,dykes,and canal diversion structures,and evaluated the effectiveness of these materials in reducing seepage failures in hydraulic structures.To achieve these goals,this study collected high-density polyethylene(HDPE)plastic from plastic recycling units and used soil mixed with HDPE plastic in the form of flakes and pellets in different contents as embankment fill materials,then evaluated how these materials affected the piping features.Laboratory experiments were conducted to determine the seepage velocity and critical hydraulic gradient of soil mixed with plastics in various contents and to compare the values with those of plain soil.The results showed that random distribution of waste plastics in the form of flakes and pellets in soil is an effective method for improving the piping resistance of soil.展开更多
基金funding support from the China National Science Foundation(Grant Nos.42072280,U2244215,41172205).
文摘Water seepage in soil is a fundamental problem involving various scientific and engineering fields.According to the literature,low-velocity water seepage in low-permeability porous media,such as clay,does not follow Darcy's law,also known as pre-Darcy flow.The formation of immovable water due to water adsorption on the pore wall is believed to be responsible for the formation of pre-Darcy flow.However,this view lacks direct solid evidence.To investigate the pre-Darcy water flow in clay,head permeability experiments are conducted on six clay samples with different densities.The results indicate that water seepage in clay at low hydraulic gradients does not follow Darcy's law.A clear nonlinear relationship between flow velocity and hydraulic gradient is observed.Water flow in clay can be divided into the pre-Darcy flow and Darcy flow regions by the critical hydraulic gradient,which is 10-12 for the Albic soil with dry density between 1.3 g/cm^(3)and 1.8 g/cm^(3).According to the disjoining pressure theory,immovable water due to water adsorption on the pore wall is the primary reason for water flow deviating from Darcy's law in clay.The results indicate that the percentage of movable water ranges from 39.7%to 59.3%for the six samples at a hydraulic gradient of 1.As the hydraulic gradient increases,the percentage of moveable water also increases.Additionally,there is a strong correlation between the percentage of movable water and the variation in hydraulic conductivity with the hydraulic gradient.Furthermore,a quantitative relationship between the percentage of movable water and the hydraulic conductivity has been established.The results of this study suggest that water adsorption on the pore wall not only affects the water movability,but is also closely related to the pre-Darcy flow phenomenon in clay.
基金funded by National Key Research and Development Program of China,China (Grant No.2020YFA0711800)Natural Science Foundation of China,China (Grant Nos.51979272 and 51879150)+1 种基金Natural Science Foundation of Jiangsu Province,China (Grant No.BK20211584)Xuzhou Science and Technology Planning Project,China (Grant No.KC21004).
文摘The nonlinear flow properties of Newtonian fluids through crossed fractures are estimated by considering the influences of length,aperture,and surface roughness of fractures.A total of 252 computational runs are performed by creating 36 computational domains,in which the Navier-Stokes equations are solved.The results show that the nonlinear relationship between flow rate and hydraulic gradient follows Forchheimer’s law–based equation.When the hydraulic gradient is small(i.e.,10^(−6)),the streamlines are parallel to the fracture walls,indicating a linear streamline distribution.When the hydraulic gradient is large(i.e.,10^(0)),the streamlines are disturbed by a certain number of eddies,indicating a nonlinear streamline distribution.The patterns of eddy distributions depend on the length,aperture,and surface roughness of fractures.With the increment of hydraulic gradient from 10^(−6) to 10^(0),the ratio of flow rate to hydraulic gradient holds constants and then decreases slightly and finally decreases robustly.The fluid flow experiences a linear flow regime,a weakly nonlinear regime,and a strongly nonlinear regime,respectively.The critical hydraulic gradient ranges from 3.27×10^(−5) to 5.82×10^(−2) when fracture length=20–100mmandmechanical aperture=1–5mm.The joint roughness coefficient plays a negligible role in the variations in critical hydraulic gradient compared with fracture length and/or mechanical aperture.The critical hydraulic gradient decreases with increasing mechanical aperture,following power-law relationships.The parameters in the functions are associated with fracture length.
基金This study was financially supported by the National Natural Science Foundation of China(Grant Nos.51879044 and 51639002)the Shandong Natural Fund(Grant No.ZR2019BEE007)+1 种基金SDUST Research Fund(Grant No.2015TDJH104)the Project oce and Technology Program(Grant No.J18KA184).
文摘A suction caisson can be extracted by applying reverse pumping water,which cannot be regarded as the reverse process of installation because of the dramatically different soil−structure interaction behavior.Model tests were first carried out in this study to investigate the extraction behavior of the modified suction caisson(MSC)and the regular suction caisson(RSC)in sand by reverse pumping water.The effects of the installation ways(suction-assisted or jacking installation)and the reverse pumping rate on the variations of the over-pressure resulting form reverse pumping water were investigated.It was found that neither the RSC nor the MSC can be fully extracted from sand.When the maximum extraction displacement is obtained,the hydraulic gradient of the sand in the suction caisson reaches the critical value,leading to seepage failure.In addition,the maximum extraction displacement decreases with the increasing reverse pumping rate.Under the same reverse pumping rate,the final extraction displacements for the RSC and MSC installed by suction are lower than those for the RSC and MSC installed by jacking.The final extraction displacement of MSC is almost equal to that of the RSC with the same internal compartment length.Based on the force equilibrium,a method of estimating the maximum extraction displacement is proposed.It has been proved that the proposed method can rationally predict the maximum extraction displacement and the corresponding over-pressure.
文摘Seepage through embankment fill materials is crucial issue in the construction of embankments for irrigation and drainage projects.Proper ground improvement methods should be used to improve the strength and stability characteristics of soil used as fill material.Utilization of waste plastic materials to enhance the engineering properties of soil is a sustainable approach.Additionally,the use of raw products directly from plastic recycling units in the form of flakes and pellets as soil additives has the potential to further enhance the economic benefits of this method.This study randomly mixed plastic materials with soil for use in the construction of earth embankments,such as river levees,dykes,and canal diversion structures,and evaluated the effectiveness of these materials in reducing seepage failures in hydraulic structures.To achieve these goals,this study collected high-density polyethylene(HDPE)plastic from plastic recycling units and used soil mixed with HDPE plastic in the form of flakes and pellets in different contents as embankment fill materials,then evaluated how these materials affected the piping features.Laboratory experiments were conducted to determine the seepage velocity and critical hydraulic gradient of soil mixed with plastics in various contents and to compare the values with those of plain soil.The results showed that random distribution of waste plastics in the form of flakes and pellets in soil is an effective method for improving the piping resistance of soil.