In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based...In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading.展开更多
This paper presents a newly developed proximity indicator for voltage stability assessment which can be used to predict critical real system load and voltages at various load buses at critical loading point.The proxim...This paper presents a newly developed proximity indicator for voltage stability assessment which can be used to predict critical real system load and voltages at various load buses at critical loading point.The proximity indicator varies almost parabolic with total real load demand and reaches orthogonally to real load axis.This relation has been utilized to predict critical loading point.It has been shown that two operating points are needed for estimating critical point and proper selection of operating points and variation of proximity indicator near collapse point highly affect the accuracy of estimation.Simulation is based on load flow equations and system real and reactive loadings have been increased in proportion with base case scenario for IEEE 14 and IEEE 25 bus test systems to demonstrate the behaviour of proposed proximity indicator.CPF has been used as benchmark to check the accuracy of estimation.展开更多
The current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3 km × 3 km resolution. Calculations were carded out for critical loads of potential acidity, actual a...The current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3 km × 3 km resolution. Calculations were carded out for critical loads of potential acidity, actual acidity, sulfur and nitrogen, with values in extents of 0-3.5, 0-14.0, 0-26.0 and 0-3.5 kmol/(hrnE.year), respectively. These values were comparable to previously reported results and reflected the influences of vegetation and soil characteristics on the soil acid buffering capacity. Simulations of SO2 emission and sulfur deposition in this study showed that sulfur deposition core areas mirrored SO2 emission centers. The prediction of sulfur deposition after 20% and 40% reduction of SO2 emission suggested that the reduction of area sources contributed greatly to the decrease of sulfur deposition. Thus, abatement of area source emissions could be the primary way to mitigate sulfur deposition in Guangdong to meet both the provincial and national regulations of air pollution control.展开更多
In this paper based on the experiment principle of evaluating adhesion property by scratch testing, the peeling mechanism of thin films is discussed by applying contact theory and surface physics theory. A mathematica...In this paper based on the experiment principle of evaluating adhesion property by scratch testing, the peeling mechanism of thin films is discussed by applying contact theory and surface physics theory. A mathematical model predicting the critical load is proposed for calculating critical load as determined byscratch testing. The factors for correctly evaluating adhesion of coatings according to the experimental data arediscussed.展开更多
By means of the theory of universal unfolding, the influence of multi-imperfections upon the critical load of structure in engineering is analysed in this paper. For the pitchfork problem, a lower bound of increments ...By means of the theory of universal unfolding, the influence of multi-imperfections upon the critical load of structure in engineering is analysed in this paper. For the pitchfork problem, a lower bound of increments of the critical loads caused by imperfections of the structures is given. A simple and available numerical method for computing the lower bound is described.展开更多
In this paper, after taking th e effect of axis force on bending into consideration, the general potential ener gy for the circular double articulated arch is established undergoing vertical d istributive load g 0/...In this paper, after taking th e effect of axis force on bending into consideration, the general potential ener gy for the circular double articulated arch is established undergoing vertical d istributive load g 0/ cos 2θ . With sufficient engineering precision, the fourth approximations to the destabilizing critical load of the arch under t his load are obtained by Ritz method. The approximations to the critical load ta ble are listed for various center angles of arch, and are contrasted with the cr itical load circular arch undergoing radial uniform load. Some reference results have been obtained.展开更多
In this paper, a set of variational formulas of solving nonlinear instability critical loads are established from the viewpoint of variational principle. The paper shows that it is very convenient to solve nonlinear i...In this paper, a set of variational formulas of solving nonlinear instability critical loads are established from the viewpoint of variational principle. The paper shows that it is very convenient to solve nonlinear instability critical load by using the variational formulas suggested in this paper.展开更多
Advanced design based on the concept of orthotropic structure includes better use of materials, less weight compared to the equivalent isotropic construction and controlled effectively reserve resistance in all its se...Advanced design based on the concept of orthotropic structure includes better use of materials, less weight compared to the equivalent isotropic construction and controlled effectively reserve resistance in all its segments. In this case a calculation of critical load is exposed using the FDM (Finite Difference Method) concept of thin plates subjected to complex loads due to forces in the middle-plane. Results of calculation model, discussed in this paper, are given in graphic form. Presented results should serve as an indicator of the expansion of theoretical base of similar models, which can be reasonably use by researchers and engineers in their practices, and by students for educational purposes.展开更多
The design of columns relies heavily on the basis of Leonhard Euler’s Theory of Elastic Buckling.However,to increase the accuracy in determining the maximum critical load a column can withstand before buckling,a cons...The design of columns relies heavily on the basis of Leonhard Euler’s Theory of Elastic Buckling.However,to increase the accuracy in determining the maximum critical load a column can withstand before buckling,a constant was introduced.This dimensionless coefficient is K,also known as the effective-length factor.This constant is often found in building design codes and varies in value depending on the type of column support that is applied.This paper presents experimental and analytical studies on the determination of the effective-length factor in the buckling stability of columns with partially-fixed support conditions.To this end,the accurate K value of the columns tested by the Instron Testing Machine(ITM)at California State University,Northridge’s(CSUN’s)Mechanics Laboratory is determined.The ITM is used in studying the buckling of columns where the supports are neither pinned nor fixed,and the material cross-section rather rests upon the machine while loading is applied axially.Several column specimens were tested and the experimental data were analyzed in order to estimation of the accurate effective-length factor.The calculations from the tested results as well as the conducted probabilistic analysis shed light on how a fragility curve may aid in predicting the effective-length value of future tests.展开更多
The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer lat...The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer latticed dome with a diameter of 50 m as an example, its imperfection sensitive region is made up of the first 12 kinds of joints. The influence of the imperfections of support joints on the stability of the K6 single-layer latticed dome is negligible. Influences of the joint imperfections of the main rib and the secondary rib on the structural stability are similar. The initial deviations of these joints all greatly lower the critical load of the dome. Results show that the method can analyze the structural imperfection sensitive region quantitatively and accurately.展开更多
A creep buckling analysis of orthotropic viscoelastic thin plates,simply-supported all around, is given. In order to simulate the real condi-tions, the relaxation time of modulus in different pripeipal material orient...A creep buckling analysis of orthotropic viscoelastic thin plates,simply-supported all around, is given. In order to simulate the real condi-tions, the relaxation time of modulus in different pripeipal material orienta-tions is arbitrary in the constitutive equations of the plates. In deriving the as-sociated governing equations, transverse shear deformations are incorporated-By means of theoretical analysis, the instantaneous critical load and durablecriticaI load are obtained. In the example, a time incremental method is usedfor the first time to calculate the creep deformation of the viscoelastic plateswith initial imperfection, subjected to a constant compressive load for a longtime.展开更多
This paper has put forward energy criteria and disturbance-response criteria for rockburst. The coal pillar rockburst or rockburst at roadway and working face have been analyzed. An equation is given to calculate the ...This paper has put forward energy criteria and disturbance-response criteria for rockburst. The coal pillar rockburst or rockburst at roadway and working face have been analyzed. An equation is given to calculate the critical load when a rockburst occurs. The ratio E/A of the elastic modulus E and softening descending modulus A is believed to be an important parameter of rockburst. The concept of resistance zone is put forward and the critical depth of resistance zone can be used in the forecast and prevention of rockburst. The value of dupporting stress of roadway has much effect on the critical load.展开更多
The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when...The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise span ratio. The buckling of the structure is characterized by a global collapse at small rise span ratio; that the torsional buckling of the radial truss occurs at big rise span ratio; and that at proper rise span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously.展开更多
Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynam...Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.展开更多
In order to study the influence of longitudinal slope on the mechanical response of steel deck pavement,a method of slope-modulus transformation was proposed for the mechanical analysis of the steel deck pavement base...In order to study the influence of longitudinal slope on the mechanical response of steel deck pavement,a method of slope-modulus transformation was proposed for the mechanical analysis of the steel deck pavement based on the time-temperature equivalence principle.Considering the mechanical action on a slope,a finite element model of the deck pavement was established to determine the critical load position of tensileand shear stress of the steel deck pavement.Additionally,the influence of longitudinal slope on the mechanical response of the deck pavement under the conditions of uniform speed and emergency braking was analyzed.The results indicate that the maximum transverse tensile stress at the pavement surface and the maximum transverse shear stress at the pavement bottom are always greater than their longitudinal counterparts under uniform speed.Under emergency braking,however,the critical slope gradient of t e maximum transverse and longitudinal tensile stress at t e pavement surface is 6%.The maximum longitudinal shear stess at t e pavement bottom is always greater ta n t e maximum tansverse shear stess.This stidy is helpful in t e strctural design of large longitudinal slope steel deck pavements.展开更多
According to the engineering features of higher pile-column bridge pier in mountainous area, a clamped beam mechanical model was set up by synthetically analyzing the higher pile-column bridge pier buckling mechanism....According to the engineering features of higher pile-column bridge pier in mountainous area, a clamped beam mechanical model was set up by synthetically analyzing the higher pile-column bridge pier buckling mechanism. Based on the catastrophe theory, the cusp catastrophe model of higher pile-column bridge pier was established by the determination of its potential fimction and bifurcation set equation, the necessary instability conditions of high pile-column bridge pier were deduced, and the determination method for column-buckling and lateral displacement of high pile-column bridge pier was derived. The comparison between the experimental and calculated results show that the calculated curves agree with testing curves and the method is reasonable and effective.展开更多
Qingdao Jiaozhou Bay subsea tunnel is the second self-built tunnel in China with the designed service life over 100 years.The durability of lining concrete are one of an important factors to determinate the service li...Qingdao Jiaozhou Bay subsea tunnel is the second self-built tunnel in China with the designed service life over 100 years.The durability of lining concrete are one of an important factors to determinate the service life of tunnel.Considering the main environmental loads and mechanical loads of subsea tunnel,the durability properties of lining concrete under combined action of compressive load and carbonation has been studied through the critical compressive load test,accelerated carbonation test,natural carbonation test and capillary suction test.The tests results show that critical compressive load apparently accelerates the carbonation and deteriorates the anti-permeability of concrete.Under the combined action of critical compressive load and carbonation,the durability of lining concrete decreases.Based on the carbonization life criteria and research results,for the high-performance concrete with proposed mix ratio,the predicted service life of lining concrete for Jiaozhou bay subsea tunnel is about 80 years which fails to reach the required service life.It is necessary to adopt other measurements simultaneously to improve the durability of lining concrete.展开更多
In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditio...In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.展开更多
According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would oc...According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would occur in the slope. When q is smaller than the critical load, q(p), the slope is in the elastic state. If q equals q(p), the slope is in the critical state, and the plastic deformation would occur along the critical angle. With the increase of q, the plastic zone would extend, and the slope is in the elasto-plastic State. If q equals limit load, the slope is in the limit equilibrium state. The slope may be divided into three zones. Some charts of the critical angle, the critical and limit load coefficients are presented in this paper.展开更多
基金The Science Foundation of Ministry of Transport of the People's Republic of China(No.200731822301-7)
文摘In order to study the critical load position that causes cavities beneath the continuously reinforced concrete pavement( CRCP) slab under vehicle loading, the elliptical load is translated into the square load based on the equivalence principle.The CRCP slab is analyzed to determine the cavity position beneath the slab under vehicle loading. The influences of cavity size on the CRCP slab's stress and vertical displacement are investigated. The study results showthat the formation of the cavity is unavoidable under traffic loading, and the cavity is located at the edge of the longitudinal crack and the slab corner.The cavity size exerts an obvious influence on the largest horizontal tensile stress and vertical displacement. The slab corner is the critical load position of the CRCP slab. The results can be used to assist the design of CRCP in avoiding cavities beneath slabs subject to vehicle loading.
文摘This paper presents a newly developed proximity indicator for voltage stability assessment which can be used to predict critical real system load and voltages at various load buses at critical loading point.The proximity indicator varies almost parabolic with total real load demand and reaches orthogonally to real load axis.This relation has been utilized to predict critical loading point.It has been shown that two operating points are needed for estimating critical point and proper selection of operating points and variation of proximity indicator near collapse point highly affect the accuracy of estimation.Simulation is based on load flow equations and system real and reactive loadings have been increased in proportion with base case scenario for IEEE 14 and IEEE 25 bus test systems to demonstrate the behaviour of proposed proximity indicator.CPF has been used as benchmark to check the accuracy of estimation.
基金supported by Guangdong Provincial Natural Science Foundation (No. 02-38100-4202003 and 06202438)New Century Excellent Talents Program of Ministry of Education of the People’s Republic of China(No. NCET-04-0790)
文摘The current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3 km × 3 km resolution. Calculations were carded out for critical loads of potential acidity, actual acidity, sulfur and nitrogen, with values in extents of 0-3.5, 0-14.0, 0-26.0 and 0-3.5 kmol/(hrnE.year), respectively. These values were comparable to previously reported results and reflected the influences of vegetation and soil characteristics on the soil acid buffering capacity. Simulations of SO2 emission and sulfur deposition in this study showed that sulfur deposition core areas mirrored SO2 emission centers. The prediction of sulfur deposition after 20% and 40% reduction of SO2 emission suggested that the reduction of area sources contributed greatly to the decrease of sulfur deposition. Thus, abatement of area source emissions could be the primary way to mitigate sulfur deposition in Guangdong to meet both the provincial and national regulations of air pollution control.
文摘In this paper based on the experiment principle of evaluating adhesion property by scratch testing, the peeling mechanism of thin films is discussed by applying contact theory and surface physics theory. A mathematical model predicting the critical load is proposed for calculating critical load as determined byscratch testing. The factors for correctly evaluating adhesion of coatings according to the experimental data arediscussed.
文摘By means of the theory of universal unfolding, the influence of multi-imperfections upon the critical load of structure in engineering is analysed in this paper. For the pitchfork problem, a lower bound of increments of the critical loads caused by imperfections of the structures is given. A simple and available numerical method for computing the lower bound is described.
文摘In this paper, after taking th e effect of axis force on bending into consideration, the general potential ener gy for the circular double articulated arch is established undergoing vertical d istributive load g 0/ cos 2θ . With sufficient engineering precision, the fourth approximations to the destabilizing critical load of the arch under t his load are obtained by Ritz method. The approximations to the critical load ta ble are listed for various center angles of arch, and are contrasted with the cr itical load circular arch undergoing radial uniform load. Some reference results have been obtained.
文摘In this paper, a set of variational formulas of solving nonlinear instability critical loads are established from the viewpoint of variational principle. The paper shows that it is very convenient to solve nonlinear instability critical load by using the variational formulas suggested in this paper.
文摘Advanced design based on the concept of orthotropic structure includes better use of materials, less weight compared to the equivalent isotropic construction and controlled effectively reserve resistance in all its segments. In this case a calculation of critical load is exposed using the FDM (Finite Difference Method) concept of thin plates subjected to complex loads due to forces in the middle-plane. Results of calculation model, discussed in this paper, are given in graphic form. Presented results should serve as an indicator of the expansion of theoretical base of similar models, which can be reasonably use by researchers and engineers in their practices, and by students for educational purposes.
基金The authors would like to express their great appreciation for funding made possible in support of this research endeavor through the CSU-LSAMP(California State University Louis Stokes Alliance for Minority Participation)program via the NSF(National Science Foundation)grant#HRD-1302873the Chancellor’s Office of the California State University。
文摘The design of columns relies heavily on the basis of Leonhard Euler’s Theory of Elastic Buckling.However,to increase the accuracy in determining the maximum critical load a column can withstand before buckling,a constant was introduced.This dimensionless coefficient is K,also known as the effective-length factor.This constant is often found in building design codes and varies in value depending on the type of column support that is applied.This paper presents experimental and analytical studies on the determination of the effective-length factor in the buckling stability of columns with partially-fixed support conditions.To this end,the accurate K value of the columns tested by the Instron Testing Machine(ITM)at California State University,Northridge’s(CSUN’s)Mechanics Laboratory is determined.The ITM is used in studying the buckling of columns where the supports are neither pinned nor fixed,and the material cross-section rather rests upon the machine while loading is applied axially.Several column specimens were tested and the experimental data were analyzed in order to estimation of the accurate effective-length factor.The calculations from the tested results as well as the conducted probabilistic analysis shed light on how a fragility curve may aid in predicting the effective-length value of future tests.
文摘The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer latticed dome with a diameter of 50 m as an example, its imperfection sensitive region is made up of the first 12 kinds of joints. The influence of the imperfections of support joints on the stability of the K6 single-layer latticed dome is negligible. Influences of the joint imperfections of the main rib and the secondary rib on the structural stability are similar. The initial deviations of these joints all greatly lower the critical load of the dome. Results show that the method can analyze the structural imperfection sensitive region quantitatively and accurately.
文摘A creep buckling analysis of orthotropic viscoelastic thin plates,simply-supported all around, is given. In order to simulate the real condi-tions, the relaxation time of modulus in different pripeipal material orienta-tions is arbitrary in the constitutive equations of the plates. In deriving the as-sociated governing equations, transverse shear deformations are incorporated-By means of theoretical analysis, the instantaneous critical load and durablecriticaI load are obtained. In the example, a time incremental method is usedfor the first time to calculate the creep deformation of the viscoelastic plateswith initial imperfection, subjected to a constant compressive load for a longtime.
文摘This paper has put forward energy criteria and disturbance-response criteria for rockburst. The coal pillar rockburst or rockburst at roadway and working face have been analyzed. An equation is given to calculate the critical load when a rockburst occurs. The ratio E/A of the elastic modulus E and softening descending modulus A is believed to be an important parameter of rockburst. The concept of resistance zone is put forward and the critical depth of resistance zone can be used in the forecast and prevention of rockburst. The value of dupporting stress of roadway has much effect on the critical load.
文摘The nonlinear finite element method is used to analyze the geometrical nonlinear stability of cable truss domes with different cable distributions. The results indicate that the critical load increases evidently when cables, especially diagonal cables, are distributed in the structure. The critical loads of the structure at different rise span ratios are also discussed in this paper. It was shown that the effect of the tensional cable is more evident at small rise span ratio. The buckling of the structure is characterized by a global collapse at small rise span ratio; that the torsional buckling of the radial truss occurs at big rise span ratio; and that at proper rise span ratio, the global collapse and the lateral buckling of the truss occur nearly simultaneously.
基金the National Natural Science Foundation of China(Nos.10772104 and10402018)the Shanghai Leading Academic Discipline Project(No.Y0103)
文摘Dynamical responses, such as motion and destruction of hyper-elastic cylindrical shells subject to periodic or suddenly applied constant load on the inner surface, are studied within a framework of finite elasto-dynamics. By numerical computation and dynamic qualitative analysis of the nonlinear differential equation, it is shown that there exists a certain critical value for the internal load describing motion of the inner surface of the shell. Motion of the shell is nonlinear periodic or quasi-periodic oscillation when the average load of the periodic load or the constant load is less than its critical value. However, the shell will be destroyed when the load exceeds the critical value. Solution to the static equilibrium problem is a fixed point for the dynamical response of the corresponding system under a suddenly applied constant load. The property of fixed point is related to the property of the dynamical solution and motion of the shell. The effects of thickness and load parameters on the critical value and oscillation of the shell are discussed.
基金The National Science Foundation of China(No.51778142)
文摘In order to study the influence of longitudinal slope on the mechanical response of steel deck pavement,a method of slope-modulus transformation was proposed for the mechanical analysis of the steel deck pavement based on the time-temperature equivalence principle.Considering the mechanical action on a slope,a finite element model of the deck pavement was established to determine the critical load position of tensileand shear stress of the steel deck pavement.Additionally,the influence of longitudinal slope on the mechanical response of the deck pavement under the conditions of uniform speed and emergency braking was analyzed.The results indicate that the maximum transverse tensile stress at the pavement surface and the maximum transverse shear stress at the pavement bottom are always greater than their longitudinal counterparts under uniform speed.Under emergency braking,however,the critical slope gradient of t e maximum transverse and longitudinal tensile stress at t e pavement surface is 6%.The maximum longitudinal shear stess at t e pavement bottom is always greater ta n t e maximum tansverse shear stess.This stidy is helpful in t e strctural design of large longitudinal slope steel deck pavements.
基金Project(50578060) supported by the National Natural Science Foundation of China
文摘According to the engineering features of higher pile-column bridge pier in mountainous area, a clamped beam mechanical model was set up by synthetically analyzing the higher pile-column bridge pier buckling mechanism. Based on the catastrophe theory, the cusp catastrophe model of higher pile-column bridge pier was established by the determination of its potential fimction and bifurcation set equation, the necessary instability conditions of high pile-column bridge pier were deduced, and the determination method for column-buckling and lateral displacement of high pile-column bridge pier was derived. The comparison between the experimental and calculated results show that the calculated curves agree with testing curves and the method is reasonable and effective.
基金Funded by the National Key Basic Research and Development Plans-973 Plans(2009CB623203)the Key Project of National Natural Science Foundation of China (50739001)+2 种基金the National Natural Science Foundation of China (50878109)the National Key Technology R & D Program (2007BAB27B03)the Education Ministry Doctor Foundation of China (20070429001)
文摘Qingdao Jiaozhou Bay subsea tunnel is the second self-built tunnel in China with the designed service life over 100 years.The durability of lining concrete are one of an important factors to determinate the service life of tunnel.Considering the main environmental loads and mechanical loads of subsea tunnel,the durability properties of lining concrete under combined action of compressive load and carbonation has been studied through the critical compressive load test,accelerated carbonation test,natural carbonation test and capillary suction test.The tests results show that critical compressive load apparently accelerates the carbonation and deteriorates the anti-permeability of concrete.Under the combined action of critical compressive load and carbonation,the durability of lining concrete decreases.Based on the carbonization life criteria and research results,for the high-performance concrete with proposed mix ratio,the predicted service life of lining concrete for Jiaozhou bay subsea tunnel is about 80 years which fails to reach the required service life.It is necessary to adopt other measurements simultaneously to improve the durability of lining concrete.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.
文摘According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would occur in the slope. When q is smaller than the critical load, q(p), the slope is in the elastic state. If q equals q(p), the slope is in the critical state, and the plastic deformation would occur along the critical angle. With the increase of q, the plastic zone would extend, and the slope is in the elasto-plastic State. If q equals limit load, the slope is in the limit equilibrium state. The slope may be divided into three zones. Some charts of the critical angle, the critical and limit load coefficients are presented in this paper.