The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate,critical pressure ratio,and discharge coefficient.The effec...The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate,critical pressure ratio,and discharge coefficient.The effect of a variation in the cone displacement and liquid content on the critical flow characteristics is examined in detail and it is shown that the former can be used to effectively adjust the critical flow rate.The critical pressure ratio of the considered nozzle is above 0.85,and the critical flow control deviation of the gas flow is within±3%.Liquid flow can reduce the gas critical mass flow rate accordingly,especially for the cases with larger liquid volume and lower inlet pressure.The set of results and conclusions provided are intended to support the optimization of steam injection techniques in the context of heavy oil recovery processes.展开更多
It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the pro...It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the productivity of CBM. With the test report and the related geological parameters of a single well, methods of combining the productivity data and typical production curves were used to analyze different geological factors and how to influence the capacity of a single layer. Then, the paper proposed a new understanding about capacity characteristics of the study area and geological control factors: First, the Shanxi formation production capacity characteristics was divided into two-stages, showing signs of gas and gas break- through for 100 days. Second, two parameters, which include potential of gas production and gas production capacity, were bet- ter than the single parameter, such as gas content, coal thickness, and penetration to analyze affecting factors of single well pro- duction. Finally, comprehensive analysis concluded that the ratio of critical desorption pressure to reservoir pressure has greater influence on the production of vertical CBM wells. Besides, the potential of gas production capacity has greater impact at stage of showing gas signs; the coal reservoir pressure and gas production capacity have greater impact at stage of gas breakthrough for 100 days. Thus, to seek the coal bed methane with high ratio of critical desorption pressure to reservoir pressure and high yield of gas will be important guarantee to the success of the coal bed methane exploration and development.展开更多
When the pressure ratio increases from the perfectly expanded condition to the third limited condition in which a normal shock is located on the exit plane, shock wave configurations outside the nozzle can be further ...When the pressure ratio increases from the perfectly expanded condition to the third limited condition in which a normal shock is located on the exit plane, shock wave configurations outside the nozzle can be further assorted as no shock wave on the perfectly expanded condition, weak oblique shock reflection in the regular reflection (RR) pressure ratio condition, shock reflection hysteresis in the dual-solution domain of pressure ratio condition, Mach disk configurations in the Mach reflection (MR) pressure ratio condition, the strong oblique shock wave configurations in the corresponding condition, and a normal shock forms on the exit plane in the third limited con- dition. Every critical pressure ratio, especially under regular reflection and Mach reflection pressure ratio conditions, is deduced in the paper according to shock wave reflection theory. A hysteresis phenomenon is also theoretically possible in the dual-solution domain. For a planar Laval nozzle with the cross-section area ratio being 5, different critical pressure ratios are counted in these con- ditions, and numerical simulations are made to demonstrate these various shock wave configurations outside the nozzle. Theoretical analysis and numerical simulations are made to get a more detailed understanding about the shock wave structures outside a Laval nozzle and the RR←→MR transition in the dual-solution domain.展开更多
In the present study, computational work using the axisymmetric, compressible, Navier-Stokes equations is carried out to predict the discharge coefficient and critical pressure ratio of gas flow through a critical noz...In the present study, computational work using the axisymmetric, compressible, Navier-Stokes equations is carried out to predict the discharge coefficient and critical pressure ratio of gas flow through a critical nozzle. The Reynolds number effects are investigated with several nozzles with different throat diameter. Diffuser angle is varied to investigate the effects on the discharge coefficient and critical pressure ratio. The computational results are compared with the previous experimental ones. It is known that the discharge coefficient and critical pressure ratio are given by functions of the Reynolds number and boundary layer integral properties. It is also found that diffuser angle affects the critical pressure ratio.展开更多
基金The authors would like to acknowledge the support provided by the National Natural Science Foundation of China(No.62173049)the open fund of the Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(Grant K2021-17).
文摘The response of an adjustable critical-flow Venturi nozzle is investigated through a set indoor experiments aimed to determine the related critical flow rate,critical pressure ratio,and discharge coefficient.The effect of a variation in the cone displacement and liquid content on the critical flow characteristics is examined in detail and it is shown that the former can be used to effectively adjust the critical flow rate.The critical pressure ratio of the considered nozzle is above 0.85,and the critical flow control deviation of the gas flow is within±3%.Liquid flow can reduce the gas critical mass flow rate accordingly,especially for the cases with larger liquid volume and lower inlet pressure.The set of results and conclusions provided are intended to support the optimization of steam injection techniques in the context of heavy oil recovery processes.
文摘It is of great significance to forecast high yield of CBM wells and analyze dynamic production by having an overall study on the characteristics of the produced CBM and determining the main factors influencing the productivity of CBM. With the test report and the related geological parameters of a single well, methods of combining the productivity data and typical production curves were used to analyze different geological factors and how to influence the capacity of a single layer. Then, the paper proposed a new understanding about capacity characteristics of the study area and geological control factors: First, the Shanxi formation production capacity characteristics was divided into two-stages, showing signs of gas and gas break- through for 100 days. Second, two parameters, which include potential of gas production and gas production capacity, were bet- ter than the single parameter, such as gas content, coal thickness, and penetration to analyze affecting factors of single well pro- duction. Finally, comprehensive analysis concluded that the ratio of critical desorption pressure to reservoir pressure has greater influence on the production of vertical CBM wells. Besides, the potential of gas production capacity has greater impact at stage of showing gas signs; the coal reservoir pressure and gas production capacity have greater impact at stage of gas breakthrough for 100 days. Thus, to seek the coal bed methane with high ratio of critical desorption pressure to reservoir pressure and high yield of gas will be important guarantee to the success of the coal bed methane exploration and development.
基金supported by the National Natural Science Foundation of China (No. 10702009)
文摘When the pressure ratio increases from the perfectly expanded condition to the third limited condition in which a normal shock is located on the exit plane, shock wave configurations outside the nozzle can be further assorted as no shock wave on the perfectly expanded condition, weak oblique shock reflection in the regular reflection (RR) pressure ratio condition, shock reflection hysteresis in the dual-solution domain of pressure ratio condition, Mach disk configurations in the Mach reflection (MR) pressure ratio condition, the strong oblique shock wave configurations in the corresponding condition, and a normal shock forms on the exit plane in the third limited con- dition. Every critical pressure ratio, especially under regular reflection and Mach reflection pressure ratio conditions, is deduced in the paper according to shock wave reflection theory. A hysteresis phenomenon is also theoretically possible in the dual-solution domain. For a planar Laval nozzle with the cross-section area ratio being 5, different critical pressure ratios are counted in these con- ditions, and numerical simulations are made to demonstrate these various shock wave configurations outside the nozzle. Theoretical analysis and numerical simulations are made to get a more detailed understanding about the shock wave structures outside a Laval nozzle and the RR←→MR transition in the dual-solution domain.
文摘In the present study, computational work using the axisymmetric, compressible, Navier-Stokes equations is carried out to predict the discharge coefficient and critical pressure ratio of gas flow through a critical nozzle. The Reynolds number effects are investigated with several nozzles with different throat diameter. Diffuser angle is varied to investigate the effects on the discharge coefficient and critical pressure ratio. The computational results are compared with the previous experimental ones. It is known that the discharge coefficient and critical pressure ratio are given by functions of the Reynolds number and boundary layer integral properties. It is also found that diffuser angle affects the critical pressure ratio.