The element diffusion process of Nb_3Sn superconductors by bronze route was studied using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The critical current of superconductors was...The element diffusion process of Nb_3Sn superconductors by bronze route was studied using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The critical current of superconductors was measured by four-point method. The results show that a diffusion layer has formed around the boundaries between the filaments and bronze matrix after 15 h heat treatment. The diffusion layer thickness keeps stable after heat treatment duration of 50~75 h. The stable and solid Nb 3 Sn layer is obtained in the sample after 100 h heat treatment. Excessive heat treatment would induce superconductivity degeneration because of superconductor grain coarsening. The characteristics of the element diffusion process were discussed. The diffusion of tin atom is the governing factor in diffusion. In this study, Nb_3_Sn superconductors with good superconducting property were fabricated successfully at 670 °C after 100h heat treatment.展开更多
A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic...A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic matrix,and acquiring a real-time traffic matrix in current complex networks is difficult.Therefore,this research investigates how to reduce network energy consumption without a real-time traffic matrix.In particular,this paper proposes an intra-domain energy-efficient routing scheme based on multipath routing.It analyzes the relationship between routing availability and energy-efficient routing and integrates the two mechanisms to satisfy the requirements of availability and energy efficiency.The main research focus is as follows:(1)A link criticality model is evaluated to quantitatively measure the importance of links in a network.(2)On the basis of the link criticality model,this paper analyzes an energy-efficient routing technology based on multipath routing to achieve the goals of availability and energy efficiency simultaneously.(3)An energy-efficient routing algorithm based on multipath routing in large-scale networks is proposed.(4)The proposed method does not require a real-time traffic matrix in the network and is thus easy to apply in practice.(5)The proposed algorithm is verified in several network topologies.Experimental results show that the algorithm can not only reduce network energy consumption but can also ensure routing availability.展开更多
流量均衡是为了避免网络拥塞而作为流量工程中的路由优化目标提出来的,由于数据中心网络的流量特性,使得传统IP网络的流量工程方法不一定适合.为此,本文在SDN(Software Defined Network)的框架下,提出了一种基于链路关键度的自适应负载...流量均衡是为了避免网络拥塞而作为流量工程中的路由优化目标提出来的,由于数据中心网络的流量特性,使得传统IP网络的流量工程方法不一定适合.为此,本文在SDN(Software Defined Network)的框架下,提出了一种基于链路关键度的自适应负载均衡流量工程方法:DraLCD(Dynamic Routing Algorithm based on Link Critical Degree).该方法通过对全局视图的网络管控,并充分利用了网络中存在的冗余路径,在完成细粒度流量均衡的同时,能够降低控制器的计算开销以及与交换机之间的通信开销,最终完成路由优化的目标.最后,基于DraLCD设计的原型系统,通过在Mininet仿真平台中部署并进行仿真实验,与现有的等开销多路径路由算法ECMP(Equal-Cost MultiPath)以及GFF(Global First Fit)路由算法相比较,能够明显地提升网络性能.展开更多
基金supported by the National Natural Science Foundation of China(No.50925726)
文摘The element diffusion process of Nb_3Sn superconductors by bronze route was studied using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The critical current of superconductors was measured by four-point method. The results show that a diffusion layer has formed around the boundaries between the filaments and bronze matrix after 15 h heat treatment. The diffusion layer thickness keeps stable after heat treatment duration of 50~75 h. The stable and solid Nb 3 Sn layer is obtained in the sample after 100 h heat treatment. Excessive heat treatment would induce superconductivity degeneration because of superconductor grain coarsening. The characteristics of the element diffusion process were discussed. The diffusion of tin atom is the governing factor in diffusion. In this study, Nb_3_Sn superconductors with good superconducting property were fabricated successfully at 670 °C after 100h heat treatment.
基金supported by the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(Nos.61702315,61802092)+1 种基金the Applied Basic Research Plan of Shanxi Province(No.2201901D211168)the Key R&D Program(International Science and Technology Cooperation Project)of Shanxi Province China(No.201903D421003).
文摘A reduction in network energy consumption and the establishment of green networks have become key scientific problems in academic and industrial research.Existing energy efficiency schemes are based on a known traffic matrix,and acquiring a real-time traffic matrix in current complex networks is difficult.Therefore,this research investigates how to reduce network energy consumption without a real-time traffic matrix.In particular,this paper proposes an intra-domain energy-efficient routing scheme based on multipath routing.It analyzes the relationship between routing availability and energy-efficient routing and integrates the two mechanisms to satisfy the requirements of availability and energy efficiency.The main research focus is as follows:(1)A link criticality model is evaluated to quantitatively measure the importance of links in a network.(2)On the basis of the link criticality model,this paper analyzes an energy-efficient routing technology based on multipath routing to achieve the goals of availability and energy efficiency simultaneously.(3)An energy-efficient routing algorithm based on multipath routing in large-scale networks is proposed.(4)The proposed method does not require a real-time traffic matrix in the network and is thus easy to apply in practice.(5)The proposed algorithm is verified in several network topologies.Experimental results show that the algorithm can not only reduce network energy consumption but can also ensure routing availability.
文摘流量均衡是为了避免网络拥塞而作为流量工程中的路由优化目标提出来的,由于数据中心网络的流量特性,使得传统IP网络的流量工程方法不一定适合.为此,本文在SDN(Software Defined Network)的框架下,提出了一种基于链路关键度的自适应负载均衡流量工程方法:DraLCD(Dynamic Routing Algorithm based on Link Critical Degree).该方法通过对全局视图的网络管控,并充分利用了网络中存在的冗余路径,在完成细粒度流量均衡的同时,能够降低控制器的计算开销以及与交换机之间的通信开销,最终完成路由优化的目标.最后,基于DraLCD设计的原型系统,通过在Mininet仿真平台中部署并进行仿真实验,与现有的等开销多路径路由算法ECMP(Equal-Cost MultiPath)以及GFF(Global First Fit)路由算法相比较,能够明显地提升网络性能.