This paper presents an augmented framework for analyzing Safety Critical Systems (SCSs) formally. Due to high risk of failure, development process of SCSs is required more attention. Model driven approaches are the on...This paper presents an augmented framework for analyzing Safety Critical Systems (SCSs) formally. Due to high risk of failure, development process of SCSs is required more attention. Model driven approaches are the one of ways to develop SCSs for accomplishing critical and complex function what SCSs are supposed to do. Two model driven approaches: Unified Modeling Language (UML) and Formal Methods are combined in proposed framework which enables the analysis, designing and testing safety properties of SCSs more rigorously in order to reduce the ambiguities and enhance the correctness and completeness of SCSs. A real time case study has been discussed in order to validate the proposed framework.展开更多
Formal methods are the mathematically techniques and tools which are used at early stages of software development lifecycle processes. The utter need of using formal methods in safety critical system leads to accuracy...Formal methods are the mathematically techniques and tools which are used at early stages of software development lifecycle processes. The utter need of using formal methods in safety critical system leads to accuracy, consistency and correctness in proposed system. In safety critical real time application, requirements should be unambiguous and very accurate which can be achieved by using mathematical theorems. There is utter need to focus on the requirement phase which is the most critical phase of SDLC. This paper focuses on the use of Z notation for incorporating the accuracy, consistency, and eliminates ambiguity in safety critical system: Road Traffic Management System as a case study. The syntax, semantics, type checking and domain checking are further verified by using Z/EVES: a Z notation type checker tool.展开更多
Critical systems are typically complex systems that are required to perform reliably over a wide range of scenarios, or multistate world. Seldom does a single system exist that performs best for all plausible scenario...Critical systems are typically complex systems that are required to perform reliably over a wide range of scenarios, or multistate world. Seldom does a single system exist that performs best for all plausible scenarios. A robust solution, one that performs relatively well over a wide range of scenarios, is often the preferred choice for reduced risk at an acceptable cost. The alternative with the maximum expected utility may possess vulnerabilities that could be exploited. The best strategy is likely to be a hybrid solution. The von Neumann-Morgenstern Expected Utility Theory (EUT) would never select such a solution because, given its linear functional form, the expected utility of a hybrid solution cannot be greater than that of every constituent alternative. The continuity axiom and the independence axiom are assessed to be unrealistic for the problem of interest. Several well-known decision models are analyzed and demonstrated to be potentially misleading. The linear disappointment model modifies EUT by adding a term proportional to downside risk;however, it does not provide a mathematical basis for determining preferred hybrid solutions. The paper proposes a portfolio allocation model with stochastic optimization as a flexible and transparent method for defining choice problems and determining hybrid solutions for critical systems with desirable properties such as diversification and robustness.展开更多
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti...Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.展开更多
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
BACKGROUND Psychological assessment after intensive care unit(ICU)discharge is increasingly used to assess patients'cognitive and psychological well-being.However,few studies have examined those who recovered from...BACKGROUND Psychological assessment after intensive care unit(ICU)discharge is increasingly used to assess patients'cognitive and psychological well-being.However,few studies have examined those who recovered from coronavirus disease 2019(COVID-19).There is a paucity of data from the Middle East assessing the post-ICU discharge mental health status of patients who had COVID-19.AIM To evaluate anxiety and depression among patients who had severe COVID-19.METHODS This is a prospective single-center follow-up questionnaire-based study of adults who were admitted to the ICU or under ICU consultation for>24 h for COVID-19.Eligible patients were contacted via telephone.The patient’s anxiety and depression six months after ICU discharge were assessed using the Hospital Anxiety and Depression Scale(HADS).The primary outcome was the mean HADS score.The secondary outcomes were risk factors of anxiety and/or depression.RESULTS Patients who were admitted to the ICU because of COVID-19 were screened(n=518).Of these,48 completed the questionnaires.The mean age was 56.3±17.2 years.Thirty patients(62.5%)were male.The main comorbidities were endocrine(n=24,50%)and cardiovascular(n=21,43.8%)diseases.The mean overall HADS score for anxiety and depression at 6 months post-ICU discharge was 11.4(SD±8.5).A HADS score of>7 for anxiety and depression was detected in 15 patients(30%)and 18 patients(36%),respectively.Results from the multivariable ordered logistic regression demonstrated that vasopressor use was associated with the development of anxiety and depression[odds ratio(OR)39.06,95% confidence interval:1.309-1165.8;P<0.05].CONCLUSION Six months after ICU discharge,30% of patients who had COVID-19 demonstrated a HADS score that confirmed anxiety and depression.To compare the psychological status of patients following an ICU admission(with vs without COVID-19),further studies are warranted.展开更多
In this paper,we study the following Schrodinger-Poisson system with critical growth:■We establish the existence of a positive ground state solution and a least energy sign-changing solution,providing that the nonlin...In this paper,we study the following Schrodinger-Poisson system with critical growth:■We establish the existence of a positive ground state solution and a least energy sign-changing solution,providing that the nonlinearity f is super-cubic,subcritical and that the potential V(x)has a potential well.展开更多
Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which no...Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy.展开更多
In this paper,we consider the following Kirchhoff-Schrodinger-Poisson system:{−(a+b∫_(R^(3))|∇u|^(2))△u+u+ϕu=μQ(x)|u|^(q-2)u+K(x)|u|^(4)u,in R^(3),−△ϕ=u^(2) the nonlinear growth of|u|^(4)u reaches the Sobolev crit...In this paper,we consider the following Kirchhoff-Schrodinger-Poisson system:{−(a+b∫_(R^(3))|∇u|^(2))△u+u+ϕu=μQ(x)|u|^(q-2)u+K(x)|u|^(4)u,in R^(3),−△ϕ=u^(2) the nonlinear growth of|u|^(4)u reaches the Sobolev critical exponent.By combining the variational method with the concentration-compactness principle of Lions,we establish the existence of a positive solution and a positive radial solution to this problem under some suitable conditions.The nonlinear term includes the nonlinearity f(u)~|u|^(q-2)u for the well-studied case q∈[4,6),and the less-studied case q∈(2,3),we adopt two different strategies to handle these cases.Our result improves and extends some related works in the literature.展开更多
Critical care medicine in the 21st century has witnessed remarkable advancements that have significantly improved patient outcomes in intensive care units(ICUs).This abstract provides a concise summary of the latest d...Critical care medicine in the 21st century has witnessed remarkable advancements that have significantly improved patient outcomes in intensive care units(ICUs).This abstract provides a concise summary of the latest developments in critical care,highlighting key areas of innovation.Recent advancements in critical care include Precision Medicine:Tailoring treatments based on individual patient characteristics,genomics,and biomarkers to enhance the effectiveness of therapies.The objective is to describe the recent advancements in Critical Care Medicine.Telemedicine:The integration of telehealth technologies for remote patient monitoring and consultation,facilitating timely interventions.Artificial intelligence(AI):AI-driven tools for early disease detection,predictive analytics,and treatment optimization,enhancing clinical decision-making.Organ Support:Advanced life support systems,such as Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy provide better organ support.Infection Control:Innovative infection control measures to combat emerging pathogens and reduce healthcare-associated infections.Ventilation Strategies:Precision ventilation modes and lung-protective strategies to minimize ventilatorinduced lung injury.Sepsis Management:Early recognition and aggressive management of sepsis with tailored interventions.Patient-Centered Care:A shift towards patient-centered care focusing on psychological and emotional wellbeing in addition to medical needs.We conducted a thorough literature search on PubMed,EMBASE,and Scopus using our tailored strategy,incorporating keywords such as critical care,telemedicine,and sepsis management.A total of 125 articles meeting our criteria were included for qualitative synthesis.To ensure reliability,we focused only on articles published in the English language within the last two decades,excluding animal studies,in vitro/molecular studies,and non-original data like editorials,letters,protocols,and conference abstracts.These advancements reflect a dynamic landscape in critical care medicine,where technology,research,and patient-centered approaches converge to improve the quality of care and save lives in ICUs.The future of critical care promises even more innovative solutions to meet the evolving challenges of modern medicine.展开更多
In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an ext...In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.展开更多
Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking ca...Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking cannot be applied in the case under examination,since G-B-KDs are uncontrolled.On the other hand,drone capturing schemes and electromagnetic pulse(EMP)weapons seem to be effective.However,again,existing approaches present various limitations,while most of them do not examine the case of G-B-KDs.This paper,focuses on the aforementioned under-researched field,where the G-B-KD is confronted by two defensive drones.The first neutralizes and captures the kamikaze drone,while the second captures the bomb.Both defensive drones are equipped with a net-gun and an innovative algorithm,which,among others,estimates the locations of interception,using a real-world trajectory model.Additionally,one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk.Extensive simulated experiments and comparisons to state-of-art methods,reveal the advantages and limitations of the proposed approach.More specifically,compared to state-of-art,the proposed approach improves:(a)time to neutralize the target by at least 6.89%,(b)maximum number of missions by at least 1.27%and(c)total cost by at least 5.15%.展开更多
Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteris...Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteristics of AE signals preceding granite fracture,based on the critical slowing down(CSD)theory.The granite undergoes a transition from the stable phase to the fracture phase and exhibits a clear CSD phenomenon,characterized by a pronounced increase in variance and autocorrelation coefficient.The variance mutation points were found to be more identifiable and suitable as the primary criterion for predicting precursor information related to granite fracture,compared to the autocorrelation coefficient.It is noteworthy to emphasize that the CSD factor holds greater potential in elucidating the underlying mechanisms responsible for the critical transition of granite fracture,in comparison to the AE timing parameters.Furthermore,a novel multi-parameter collaborative prediction method for rock fracture was developed by comprehensively analyzing predictive information,including abnormal variation modes and the CSD factor of AE characteristic parameters.This method enhances the understanding and prediction of rock fracture-related geohazards.展开更多
In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,...In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.展开更多
Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effe...Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.展开更多
This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼7...This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼75k compounds is utilized for pretraining,followed by fine-tuning with a smaller Critical Temperature(T_(c))dataset containing∼300 compounds.Comparatively,there is a significant improvement in the performance of the transfer learning model over the traditional deep learning(DL)model in predicting Tc.Subsequently,the transfer learning model is applied to predict the properties of approximately 150k compounds.Predictions are validated computationally using density functional theory(DFT)calculations based on lattice dynamics-related theory.Moreover,to demonstrate the extended predictive capability of the transfer learning model for new materials,a pool of virtual compounds derived from prototype crystal structures from the Materials Project(MP)database is generated.T_(c) predictions are obtained for∼3600 virtual compounds,which underwent screening for electroneutrality and thermodynamic stability.An Extra Trees-based model is trained to utilize E_(hull)values to obtain thermodynamically stable materials,employing a dataset containing Ehull values for approximately 150k materials for training.Materials with Ehull values exceeding 5 meV/atom were filtered out,resulting in a refined list of potential Mg-based superconductors.This study showcases the effectiveness of transfer learning in predicting superconducting properties and highlights its potential for accelerating the discovery of Mg-based materials in the field of superconductivity.展开更多
The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basi...The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basis set.Contrary to the localized behavior observed in the ground and the doubly excited 2p^(23)Pe states,for this state our results identify that while the behavior of the inner electron increasingly resembles that of a hydrogen-like atomic system,the outer electron in the excited state exhibits diffused hydrogen-like character and becomes perpendicular to the inner electron as nuclear charge Z approaches Z_(c).This study provides insights into the electronic structure and stability of the two-electron system in the vicinity of the critical nuclear charge.展开更多
The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics ...The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics and the wide variety of chemical compositions available.Here,comprehensive basic characterization and magnetic studies are conducted on quasi-2D ferromagnetic Cr_(1.04)Te_(2) crystals.Measurements of the isothermal magnetization curves are conducted around the critical temperature to systematically investigate the critical behavior.Specifically,the critical exponents β=0.2399,γ=0.859,and δ=4.3498,as well as the Curie temperature T_(C)=249.56 K,are determined using various methods,including the modified Arrott plots,the Kouvel-Fisher method,the Widom scaling method,and the critical isotherm analysis.These results indicate that the tricritical mean-field model accurately represents the critical behavior of Cr_(1.04)Te_(2.A magnetic phase diagram with tricritical phenomenon is thus constructed.Further investigations confirm that the critical exponents obtained conform to the scalar equation near T_(C),indicating their self-consistency and reliability.Our work sheds light on the magnetic properties of quasi-2D Cr_(1.04)Te_(2),broadening the scope of the van der Waals crystals for developments of future spintronic devices operable at room temperature.展开更多
The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit...The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.展开更多
文摘This paper presents an augmented framework for analyzing Safety Critical Systems (SCSs) formally. Due to high risk of failure, development process of SCSs is required more attention. Model driven approaches are the one of ways to develop SCSs for accomplishing critical and complex function what SCSs are supposed to do. Two model driven approaches: Unified Modeling Language (UML) and Formal Methods are combined in proposed framework which enables the analysis, designing and testing safety properties of SCSs more rigorously in order to reduce the ambiguities and enhance the correctness and completeness of SCSs. A real time case study has been discussed in order to validate the proposed framework.
文摘Formal methods are the mathematically techniques and tools which are used at early stages of software development lifecycle processes. The utter need of using formal methods in safety critical system leads to accuracy, consistency and correctness in proposed system. In safety critical real time application, requirements should be unambiguous and very accurate which can be achieved by using mathematical theorems. There is utter need to focus on the requirement phase which is the most critical phase of SDLC. This paper focuses on the use of Z notation for incorporating the accuracy, consistency, and eliminates ambiguity in safety critical system: Road Traffic Management System as a case study. The syntax, semantics, type checking and domain checking are further verified by using Z/EVES: a Z notation type checker tool.
文摘Critical systems are typically complex systems that are required to perform reliably over a wide range of scenarios, or multistate world. Seldom does a single system exist that performs best for all plausible scenarios. A robust solution, one that performs relatively well over a wide range of scenarios, is often the preferred choice for reduced risk at an acceptable cost. The alternative with the maximum expected utility may possess vulnerabilities that could be exploited. The best strategy is likely to be a hybrid solution. The von Neumann-Morgenstern Expected Utility Theory (EUT) would never select such a solution because, given its linear functional form, the expected utility of a hybrid solution cannot be greater than that of every constituent alternative. The continuity axiom and the independence axiom are assessed to be unrealistic for the problem of interest. Several well-known decision models are analyzed and demonstrated to be potentially misleading. The linear disappointment model modifies EUT by adding a term proportional to downside risk;however, it does not provide a mathematical basis for determining preferred hybrid solutions. The paper proposes a portfolio allocation model with stochastic optimization as a flexible and transparent method for defining choice problems and determining hybrid solutions for critical systems with desirable properties such as diversification and robustness.
基金Project supported by the Scientific Research Foundation for Youth Academic Talent of Inner Mongolia University (Grant No.1000023112101/010)the Fundamental Research Funds for the Central Universities of China (Grant No.JN200208)+2 种基金supported by the National Natural Science Foundation of China (Grant No.11474023)supported by the National Key Research and Development Program of China (Grant No.2021YFA1401803)the National Natural Science Foundation of China (Grant Nos.11974051 and 11734002)。
文摘Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points.
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
基金the Researchers Supporting Project number,King Saud University,Riyadh,Saudi Arabia,No.RSPD2024R919.
文摘BACKGROUND Psychological assessment after intensive care unit(ICU)discharge is increasingly used to assess patients'cognitive and psychological well-being.However,few studies have examined those who recovered from coronavirus disease 2019(COVID-19).There is a paucity of data from the Middle East assessing the post-ICU discharge mental health status of patients who had COVID-19.AIM To evaluate anxiety and depression among patients who had severe COVID-19.METHODS This is a prospective single-center follow-up questionnaire-based study of adults who were admitted to the ICU or under ICU consultation for>24 h for COVID-19.Eligible patients were contacted via telephone.The patient’s anxiety and depression six months after ICU discharge were assessed using the Hospital Anxiety and Depression Scale(HADS).The primary outcome was the mean HADS score.The secondary outcomes were risk factors of anxiety and/or depression.RESULTS Patients who were admitted to the ICU because of COVID-19 were screened(n=518).Of these,48 completed the questionnaires.The mean age was 56.3±17.2 years.Thirty patients(62.5%)were male.The main comorbidities were endocrine(n=24,50%)and cardiovascular(n=21,43.8%)diseases.The mean overall HADS score for anxiety and depression at 6 months post-ICU discharge was 11.4(SD±8.5).A HADS score of>7 for anxiety and depression was detected in 15 patients(30%)and 18 patients(36%),respectively.Results from the multivariable ordered logistic regression demonstrated that vasopressor use was associated with the development of anxiety and depression[odds ratio(OR)39.06,95% confidence interval:1.309-1165.8;P<0.05].CONCLUSION Six months after ICU discharge,30% of patients who had COVID-19 demonstrated a HADS score that confirmed anxiety and depression.To compare the psychological status of patients following an ICU admission(with vs without COVID-19),further studies are warranted.
基金supported by the National NaturalScience Foundation of China(12071170,11961043,11931012,12271196)supported by the excellent doctoral dissertation cultivation grant(2022YBZZ034)from Central China Normal University。
文摘In this paper,we study the following Schrodinger-Poisson system with critical growth:■We establish the existence of a positive ground state solution and a least energy sign-changing solution,providing that the nonlinearity f is super-cubic,subcritical and that the potential V(x)has a potential well.
基金This study was funded by the National Key Research and Development Program of China(2021YFD1700900).
文摘Phosphorus(P)is a nonrenewable resource and a critical element for plant growth that plays an important role in improving crop yield.Excessive P fertilizer application is widespread in agricultural production,which not only wastes phosphate resources but also causes P accumulation and groundwater pollution.Here,we hypothesized that the apparent P balance of a crop system could be used as an indicator for identifying the critical P input in order to obtain a high yield with high phosphorus use efficiency(PUE).A 12-year field experiment with P fertilization rates of 0,45,90,135,180,and 225 kg P_(2)O_(5)ha^(-1)was conducted to determine the crop yield,PUE,and soil Olsen-P value response to P balance,and to optimize the P input.Annual yield stagnation occurred when the P fertilizer application exceeded a certain level,and high yield and PUE levels were achieved with annual P fertilizer application rates of 90-135 kg P_(2)O_(5)ha^(-1).A critical P balance range of 2.15-4.45 kg P ha^(-1)was recommended to achieve optimum yield with minimal environmental risk.The critical P input range estimated from the P balance was 95.7-101 kg P_(2)O_(5)ha^(-1),which improved relative yield(>90%)and PUE(90.0-94.9%).In addition,the P input-output balance helps in assessing future changes in Olsen-P values,which increased by 4.07 mg kg^(-1)of P for every 100 kg of P surplus.Overall,the P balance can be used as a critical indicator for P management in agriculture,providing a robust reference for limiting P excess and developing a more productive,efficient and environmentally friendly P fertilizer management strategy.
基金Supported by NSFC(12171014,ZR2020MA005,ZR2021MA096)。
文摘In this paper,we consider the following Kirchhoff-Schrodinger-Poisson system:{−(a+b∫_(R^(3))|∇u|^(2))△u+u+ϕu=μQ(x)|u|^(q-2)u+K(x)|u|^(4)u,in R^(3),−△ϕ=u^(2) the nonlinear growth of|u|^(4)u reaches the Sobolev critical exponent.By combining the variational method with the concentration-compactness principle of Lions,we establish the existence of a positive solution and a positive radial solution to this problem under some suitable conditions.The nonlinear term includes the nonlinearity f(u)~|u|^(q-2)u for the well-studied case q∈[4,6),and the less-studied case q∈(2,3),we adopt two different strategies to handle these cases.Our result improves and extends some related works in the literature.
文摘Critical care medicine in the 21st century has witnessed remarkable advancements that have significantly improved patient outcomes in intensive care units(ICUs).This abstract provides a concise summary of the latest developments in critical care,highlighting key areas of innovation.Recent advancements in critical care include Precision Medicine:Tailoring treatments based on individual patient characteristics,genomics,and biomarkers to enhance the effectiveness of therapies.The objective is to describe the recent advancements in Critical Care Medicine.Telemedicine:The integration of telehealth technologies for remote patient monitoring and consultation,facilitating timely interventions.Artificial intelligence(AI):AI-driven tools for early disease detection,predictive analytics,and treatment optimization,enhancing clinical decision-making.Organ Support:Advanced life support systems,such as Extracorporeal Membrane Oxygenation and Continuous Renal Replacement Therapy provide better organ support.Infection Control:Innovative infection control measures to combat emerging pathogens and reduce healthcare-associated infections.Ventilation Strategies:Precision ventilation modes and lung-protective strategies to minimize ventilatorinduced lung injury.Sepsis Management:Early recognition and aggressive management of sepsis with tailored interventions.Patient-Centered Care:A shift towards patient-centered care focusing on psychological and emotional wellbeing in addition to medical needs.We conducted a thorough literature search on PubMed,EMBASE,and Scopus using our tailored strategy,incorporating keywords such as critical care,telemedicine,and sepsis management.A total of 125 articles meeting our criteria were included for qualitative synthesis.To ensure reliability,we focused only on articles published in the English language within the last two decades,excluding animal studies,in vitro/molecular studies,and non-original data like editorials,letters,protocols,and conference abstracts.These advancements reflect a dynamic landscape in critical care medicine,where technology,research,and patient-centered approaches converge to improve the quality of care and save lives in ICUs.The future of critical care promises even more innovative solutions to meet the evolving challenges of modern medicine.
文摘In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.
基金supported in part by Interbit Research and in part by the European Union under(Grant No.2021-1-EL01-KA220-VET-000028082).
文摘Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking cannot be applied in the case under examination,since G-B-KDs are uncontrolled.On the other hand,drone capturing schemes and electromagnetic pulse(EMP)weapons seem to be effective.However,again,existing approaches present various limitations,while most of them do not examine the case of G-B-KDs.This paper,focuses on the aforementioned under-researched field,where the G-B-KD is confronted by two defensive drones.The first neutralizes and captures the kamikaze drone,while the second captures the bomb.Both defensive drones are equipped with a net-gun and an innovative algorithm,which,among others,estimates the locations of interception,using a real-world trajectory model.Additionally,one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk.Extensive simulated experiments and comparisons to state-of-art methods,reveal the advantages and limitations of the proposed approach.More specifically,compared to state-of-art,the proposed approach improves:(a)time to neutralize the target by at least 6.89%,(b)maximum number of missions by at least 1.27%and(c)total cost by at least 5.15%.
基金Project(52074294)supported by the National Natural Science Foundation of ChinaProject(2022YJSNY16)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Rock fracture warning is one of the significant challenges in rock mechanics.Many true triaxial and synchronous acoustic emission(AE)tests were conducted on granite samples.The investigation focused on the characteristics of AE signals preceding granite fracture,based on the critical slowing down(CSD)theory.The granite undergoes a transition from the stable phase to the fracture phase and exhibits a clear CSD phenomenon,characterized by a pronounced increase in variance and autocorrelation coefficient.The variance mutation points were found to be more identifiable and suitable as the primary criterion for predicting precursor information related to granite fracture,compared to the autocorrelation coefficient.It is noteworthy to emphasize that the CSD factor holds greater potential in elucidating the underlying mechanisms responsible for the critical transition of granite fracture,in comparison to the AE timing parameters.Furthermore,a novel multi-parameter collaborative prediction method for rock fracture was developed by comprehensively analyzing predictive information,including abnormal variation modes and the CSD factor of AE characteristic parameters.This method enhances the understanding and prediction of rock fracture-related geohazards.
基金Project supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(No.U2341231)the National Natural Science Foundation of China(No.12172186)。
文摘In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries.
基金supported by the National Natural Science Foundation of China(No.52272198 and 52002122)the Project funded by China Postdoctoral Science Foundation(No.2021M690947).
文摘Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.
文摘This study presents a transfer learning approach for discovering potential Mg-based superconductors utilizing a comprehensive target dataset.Initially,a large source dataset(Bandgap dataset)comprising approximately∼75k compounds is utilized for pretraining,followed by fine-tuning with a smaller Critical Temperature(T_(c))dataset containing∼300 compounds.Comparatively,there is a significant improvement in the performance of the transfer learning model over the traditional deep learning(DL)model in predicting Tc.Subsequently,the transfer learning model is applied to predict the properties of approximately 150k compounds.Predictions are validated computationally using density functional theory(DFT)calculations based on lattice dynamics-related theory.Moreover,to demonstrate the extended predictive capability of the transfer learning model for new materials,a pool of virtual compounds derived from prototype crystal structures from the Materials Project(MP)database is generated.T_(c) predictions are obtained for∼3600 virtual compounds,which underwent screening for electroneutrality and thermodynamic stability.An Extra Trees-based model is trained to utilize E_(hull)values to obtain thermodynamically stable materials,employing a dataset containing Ehull values for approximately 150k materials for training.Materials with Ehull values exceeding 5 meV/atom were filtered out,resulting in a refined list of potential Mg-based superconductors.This study showcases the effectiveness of transfer learning in predicting superconducting properties and highlights its potential for accelerating the discovery of Mg-based materials in the field of superconductivity.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074295,12304271,and 12104420).
文摘The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basis set.Contrary to the localized behavior observed in the ground and the doubly excited 2p^(23)Pe states,for this state our results identify that while the behavior of the inner electron increasingly resembles that of a hydrogen-like atomic system,the outer electron in the excited state exhibits diffused hydrogen-like character and becomes perpendicular to the inner electron as nuclear charge Z approaches Z_(c).This study provides insights into the electronic structure and stability of the two-electron system in the vicinity of the critical nuclear charge.
基金Project supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY222170)Jiangsu Specially-Appointed Professor Program,and Natural Science Foundation of Universities of Jiangsu Province(Grant No.TJ219008)the support of the open research fund of Key Laboratory of Quantum Materials and Devices(Southeast University),Ministry of Education。
文摘The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics and the wide variety of chemical compositions available.Here,comprehensive basic characterization and magnetic studies are conducted on quasi-2D ferromagnetic Cr_(1.04)Te_(2) crystals.Measurements of the isothermal magnetization curves are conducted around the critical temperature to systematically investigate the critical behavior.Specifically,the critical exponents β=0.2399,γ=0.859,and δ=4.3498,as well as the Curie temperature T_(C)=249.56 K,are determined using various methods,including the modified Arrott plots,the Kouvel-Fisher method,the Widom scaling method,and the critical isotherm analysis.These results indicate that the tricritical mean-field model accurately represents the critical behavior of Cr_(1.04)Te_(2.A magnetic phase diagram with tricritical phenomenon is thus constructed.Further investigations confirm that the critical exponents obtained conform to the scalar equation near T_(C),indicating their self-consistency and reliability.Our work sheds light on the magnetic properties of quasi-2D Cr_(1.04)Te_(2),broadening the scope of the van der Waals crystals for developments of future spintronic devices operable at room temperature.
文摘The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.