This paper is devoted to analytical and numerical studies of global buckling of a sandwich circular plate. The mechanical properties of the plate core vary along its thickness, remaining constant in the facings. The m...This paper is devoted to analytical and numerical studies of global buckling of a sandwich circular plate. The mechanical properties of the plate core vary along its thickness, remaining constant in the facings. The middle surface of the plate is its symmetrical plane. The mathematical model of the plate is presented. The field of displacements is formulated using the proposed nonlinear hypothesis that generalizes the classical hypotheses. The equations of equilibrium are formulated based on the principle of stationary total potential energy. The proposed mathematical model of the displacements considers the shear effect. The numerical model of the plate is also formulated with a view to verify the analytical one. Numerical calculations are carried out for the chosen family of plates. The values of the critical load obtained by the analytical and numerical methods are compared. The effects of the material properties of the core and the change of the plate radius on the critical load intensity are presented.展开更多
文摘This paper is devoted to analytical and numerical studies of global buckling of a sandwich circular plate. The mechanical properties of the plate core vary along its thickness, remaining constant in the facings. The middle surface of the plate is its symmetrical plane. The mathematical model of the plate is presented. The field of displacements is formulated using the proposed nonlinear hypothesis that generalizes the classical hypotheses. The equations of equilibrium are formulated based on the principle of stationary total potential energy. The proposed mathematical model of the displacements considers the shear effect. The numerical model of the plate is also formulated with a view to verify the analytical one. Numerical calculations are carried out for the chosen family of plates. The values of the critical load obtained by the analytical and numerical methods are compared. The effects of the material properties of the core and the change of the plate radius on the critical load intensity are presented.