A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear t...A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear theory, the critical behaviors and the forming mechanism of pillar instability were discussed by external disturbance , such as stresses waves by blasting , axial force eccentricity ratherish and imperfections in pillar. The results show that the micro-disturbances attenuate with time and they are independence each other when pillar is in the stability state. Their effects on the stability of system are inessential. The correlation degree of disturbances increases sharply and various micro-disturbances are relative and nested reciprocally when the system is in critical state and they also cooperate with each other, which induces system to reach a new state.展开更多
The purpose of this paper is to establish the existence of the critical condition of borehole stability during air drilling. Rock Failure Process Analysis Code 20 was used to set up a damage model of the borehole exca...The purpose of this paper is to establish the existence of the critical condition of borehole stability during air drilling. Rock Failure Process Analysis Code 20 was used to set up a damage model of the borehole excavated in strain-softening rock. Damage evolution around the borehole was studied by tracking acoustic emission. The study indicates that excavation damaged zone (EDZ) is formed around borehole because of stress concentration after the borehole is excavated. There is a critical condition for borehole stability; the borehole will collapse when the critical damage condition is reached. The critical condition of underground excavation exists not only in elastic and ideal plastic material but in strainsoftening material as well. The research is helpful to developing an evaluation method of borehole stability during air drilling.展开更多
A study of the characteristics of the accumulative rock failure and its evolution byapplication of the group renormalization method were presented. In addition, the interactionand long-range correlated effects between...A study of the characteristics of the accumulative rock failure and its evolution byapplication of the group renormalization method were presented. In addition, the interactionand long-range correlated effects between the immediate neighboring units was studied.The concept of mechanical transference for model OFC, employed in the study ofself-organized criticality, and the coefficient a were introduced into the calculation model forgroup renormalization. With the introduction, mechanisms for the drastic increase and decrease of failure intensity of rocks were investigated under similar macro-conditions.展开更多
Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold co...Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold conditions of rill initiation. Six factors, including rainfall, runoff, soil, topography, vegetation and tillage system, are discussed. Rill initiation and network are explored. Runoff erosivity and soil erodibility are recognized as two direct factors affecting rill erosion and other types of factors may have indirect influences on rill erosion through increasing or decreasing the effects of the direct factors. Certain conditions are necessary for rill initiation and the critical conditions are different with different factors. Future studies should be focused on 1) the dynamic changes of rill networks; 2) the combined effect of multiple factors; and 3) the relationships of threshold values with other related factors.展开更多
The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indente...The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indenter. The results show that the hardness and elastic modulus at a peak indentation depth of 200 nm are 9.04 and 94.70 GPa, respectively. These values reflect the properties of the glass-ceramic rigid substrate. The fracture toughness value of the glass-ceramic rigid substrate is 2.63 MPa?m1/2. The material removal mechanisms are seen to be directly related to normal force on the tip. The critical load and scratch depth estimated from the scratch depth profile after scratching and the friction profile are 268.60 mN and 335.10 nm, respectively. If the load and scratch depth are under the critical values, the glass-ceramic rigid substrate will undergo plastic flow rather than fracture. The formula of critical depth of cut described by Bifnao et al. is modified based on the difference of critical scratch depth展开更多
The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic expl...The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.展开更多
Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is present...Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is presented. By analyzing the static metal sealing mechanism, the critical condition of the sealing performance is established for this connector and the formulation method of the contact pressure on the sealing surface is created. By the method the minimum mean contact pressure of the 8.625 inch connector is calculated as 361 MPa, which is the constraint condition in the optimum design of connector.The finite element model is created in ANSYS Parametric Design Language(APDL) and the structure is optimized by the zero-order method, with variance of contact pressure as the objective function, and mean contact pressures and plastic strains as constraint variables. The optimization shows that variances of contact pressure on two sealing surfaces decrease by 72.41% and 89.33%, respectively, and mean contact pressures increase by 31.18% and 52.84%, respectively. The comparison of the optimal connectors and non-optimal connectors in the water pressure experiments and bending experiments shows that the sealing ability of optimized connectors is much higher than the rated pressure of 4.5 MPa, and the optimal connectors don’t leak under the bending moment of 52.2 kN·m.This research provides the formulation to solve contact pressure on the sealing surface and a structure optimization method to design the connectors with various dimensions.展开更多
In this paper, we study a class of p(x)-biharmonic equations with Navier boundary condition. Using the mountain pass theorem, fountain theorem, local linking theorem and symmetric mountain pass theorem, we establish...In this paper, we study a class of p(x)-biharmonic equations with Navier boundary condition. Using the mountain pass theorem, fountain theorem, local linking theorem and symmetric mountain pass theorem, we establish the existence of at least one solution and infinitely many solutions of this problem, respectively.展开更多
Isothermal hot compression tests of as-cast high-Cr ultra-super-critical(USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250...Isothermal hot compression tests of as-cast high-Cr ultra-super-critical(USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s^(-1). The softening mechanism was dynamic recovery(DRV) at 950°C and the strain rate of 1 s^(-1), whereas it was dynamic recrystallization(DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ ×mol^(-1). The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate(θ)–flow stress(σ) and-θ/σ–σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s^(-1), with a power dissipation efficiency η greater than 31%.展开更多
Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the tempe...Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the temperatures from 450 °C to 850 °C with the strain rates from 0.001 s-1 to 1 s-1. The results show that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow true stress-strain curves of the composite, and the peak stress increases with the decreasing deformation temperature or the increasing strain rate. The thermal deformation activation energy was calculated as 170.732 k J/mol and the constitutive equation was established. The inflection point in the lnθ-ε curve appears and the minimum value of-(lnθ)/ε-ε curve is presented when the critical state is attained for this composite. The critical strain increases with the increasing strain rate or the decreasing deformation temperature. There is linear relationship between critical strain and peak strain, i.e., εc=0.572εp. The predicting model of critical strain is described by the function of εc=1.062×10-2Z0.0826.展开更多
The stiction of a thin plate induced by the capillary force has attracted much attention in the broad range of applications. A novel method is presented to calculate the capillary adhesion problem of the plate through...The stiction of a thin plate induced by the capillary force has attracted much attention in the broad range of applications. A novel method is presented to calculate the capillary adhesion problem of the plate through analytical method. The expressions of the surface energy, the strain energy and the total potential energy of the plate-substrate system have been analyzed and delineated. By means of continuum mechanics and the principle of minimum potential energy, the governing equation of the plate with an arbitrary shape and the corresponding transversality boundary condition due to the moving bound have been derived. Then the critical adhesion radius of the circular plate has been solved according to the supplementary transversality condition. Thus the deflections of the plates are analytically calculated with different critical adhesion radii. The results may be beneficial to the engineering application and the micro/nanomeasurement.展开更多
Stream blockage by the debris flow from tributary valleys is a common phenomenon in mountainous area,which takes place when large quantities of sediment transported by debris flow reaches a river channel causing its c...Stream blockage by the debris flow from tributary valleys is a common phenomenon in mountainous area,which takes place when large quantities of sediment transported by debris flow reaches a river channel causing its complete or partial blockage.The dam formed by debris flow may causes upstream and downstream flooding,and presents great threat to people and property.Because of the catastrophic influence on people and property,debris-flow dam has attracted many attentions from the researchers and local adm...展开更多
By using the method of quasi-shells , the nonlinear dynamic equations of three-dimensional single-layer shallow cylindrical reticulated shells with equilateral triangle cell are founded. By using the method of the sep...By using the method of quasi-shells , the nonlinear dynamic equations of three-dimensional single-layer shallow cylindrical reticulated shells with equilateral triangle cell are founded. By using the method of the separating variable function, the transverse displacement of the shallow cylindrical reticulated shells is given under the conditions of two edges simple support. The tensile force is solved out from the compatible equations, a nonlinear dynamic differential equation containing second and third order is derived by using the method of Galerkin. The stability near the equilibrium point is discussed by solving the Floquet exponent and the critical condition is obtained by using Melnikov function. The existence of the chaotic motion of the single-layer shallow cylindrical reticulated shell is approved by using the digital simulation method and Poincare mapping.展开更多
In this study,the approximate and exact solutions for the stationary-state of the solids model with neglecting reactant consumption for both non-uniform and uniform temperature systems were applied on gas ignition und...In this study,the approximate and exact solutions for the stationary-state of the solids model with neglecting reactant consumption for both non-uniform and uniform temperature systems were applied on gas ignition under a constant pressure condition.The criticality conditions for a slab,an infinite cylinder,and a sphere are determined and discussed using dimensionless temperatures under constant ambient and surface temperatures for a non-uniform temperature system.Exact solution for a Semenov model with convection heat loss was also presented.The solution of the Semenov problem for constant volume or density as a solid and constant pressure were compared.The critical parameterδis calculated and compared with those of Frank-Kamenetskii solution values.The validation of the calculated ignition temperatures with other exact solution and experimental results were offered.The relation between critical parameters form Semenov and F.K.models solution was introduced.展开更多
The double-die ironing process is studied by means of UBM. The formulas of deformation load.contact stress on die surface, and tensile stress which acts on workpiece is obtained. Taking account of dirnensional accurac...The double-die ironing process is studied by means of UBM. The formulas of deformation load.contact stress on die surface, and tensile stress which acts on workpiece is obtained. Taking account of dirnensional accuracy, a new critical condition of limit reduction in cross section area is put forward for the flrst time. The test experiment indicats that results of theoretical analysis well accord with the actual conditions.[0]展开更多
Hot compression experiments conducted on a Gleeble-3500thermo-mechanical simulator and metallographic observation tests were employed to study the critical conditions of dynamic recrystallization(DRX)of 316 LN auste...Hot compression experiments conducted on a Gleeble-3500thermo-mechanical simulator and metallographic observation tests were employed to study the critical conditions of dynamic recrystallization(DRX)of 316 LN austenitic stainless steel.The true stress-true strain curves of 316 LN were obtained at deformation temperatures ranging from 900℃to 1 200℃and strain rates ranging from 0.001s-1 to 10s-1.Based on the above tests,the critical conditions of DRX were determined and compared with those obtained from work-hardening theory and the Cingara-McQueen flow stress model.Furthermore,the microstructure was observed to validate the calculated results.The ratio of critical strain to peak strain(εc/εp)for 316 LN was determined,and the quantitative relationship between the critical strain and the deformation parameters of 316 LN was elucidated.The results demonstrated that the onset of DRX corresponds to the constant normalized strain hardening rate(Γ),namely,the critical strain hardening rateΓcfor316LN is equal to 0.65.展开更多
In this paper, we get the existence of a weak solution of the following inhomogeneous quasilinear elliptic equation with critical growth conditions: where N≥2, f(x,u)~|u|<sup>m-1</sup>e<sup>b|u|&...In this paper, we get the existence of a weak solution of the following inhomogeneous quasilinear elliptic equation with critical growth conditions: where N≥2, f(x,u)~|u|<sup>m-1</sup>e<sup>b|u|<sup>γ</sup></sup>at +∞, with γ=N/N-1, m≥1, b】0.展开更多
Chip splitting is a natural chip separation phenomenon that can significantly reduce cutting energy consumption.To reveal its occurrence mechanisms,a method for obtaining its critical conditions through cutting experi...Chip splitting is a natural chip separation phenomenon that can significantly reduce cutting energy consumption.To reveal its occurrence mechanisms,a method for obtaining its critical conditions through cutting experiments and establishing its critical equation is proposed in this paper.Based on previous research results regarding the relationship between chip removal interference and chip splitting,the control variables that affect chip splitting are identified by analyzing a geometric model of the cutting process.A total of 366 experiments on turning a C45E4 disc workpiece with a high-speed steel double-edged turning tool based on the dichotomy method were conducted and 51 experimental data on chip splitting critical conditions were obtained.Accordingto these experimental data,a critical equation expressed by a finitedegree polynomial with a cutting thickness equal to the other control variables was fitted.By analyzing the critical surface,it was determined that chip splitting followed a law in which the smaller the cutting thickness and the larger the absolute value of the negative rake angle,edge angle,and edge inclination of the tool,the more likely chip splitting was to occur.Through a verification experiment,it was determined that the derived critical equation could accurately predict the occurrence of 95.24%of chip splitting.It was also determined that the occurrence of chip splitting led to a cliff-like drop in the specific total cutting force with a maximum drop of 51.23%.This research lays a foundation for the rational utilization of chip splitting in tool structure parameter design and cutting parameter energy saving optimization.展开更多
The evolution of point bars in changing sections of a downstream tidal current limit is periodic. Accordingly, assessing the critical morphology and hydrodynamic characteristics of point bar scour and the sediment tra...The evolution of point bars in changing sections of a downstream tidal current limit is periodic. Accordingly, assessing the critical morphology and hydrodynamic characteristics of point bar scour and the sediment transport process of scour sediment bodies can support river regulation and waterway maintenance. The frequent scour of point bars in changing sections of tidal current limits within the Yangtze River directly restricts waterway stability. This study examined the Fujiangsha reach of the Yangtze River, hydrological data on sediment transport, and riverbed topography from 1950. The Jingjiang bank tail exhibited an evolutionary cycle(siltation>scour>siltation), with a primary period ranging from 3–6 years. Additionally, certain morphological and dynamic conditions were necessary for scour. The Datong station flow(Q) ranged from 20,000–40,000 m^(3)·s^(-1)for ≥180 days·yr^(-1), enabling the bank silt layers to widen. Scour occurred during flooding and was concentrated in areas 5.0–7.5 km downstream from Ebizui. When Q≥40,000 m^(3)·s^(-1), scouring occurred in the bank middle and lower reaches, whereas Q≥50,000 m^(3)·s^(-1)for >50 consecutive days, scour occurred at the tail as well. Moreover, the volume of the scour shoals increased with the number of high-flow days(≥60,000 m^(3)·s^(-1)). Bottom sand transport mainly occurred in the low-bank zone. Before the project’s second phase, the longitudinal transport of the scouring sand bodies occurred as follows: Jingjiang bank > low bank on the north side of Shuangjiansha > Fubei anabranch. During the second phase, the longitudinal transport route changed to Jingjiang bank > Fubei anabranch. The Jingjiang bank volume was also reduced;thus, its development was controlled. Owing to changes in the longitudinal transport routes, dredging should be conducted in areas where scouring sand bodies are separately transported from the tail, thereby reducing the load of dredging and maintenance for the Fubei anabranch during dry years.展开更多
Loosening of threaded fasteners is a key failure mode,which is mainly caused by the slippage and friction behaviors on the thread and bearing surfaces,and will affect the integrity and reliability of products.Numerous...Loosening of threaded fasteners is a key failure mode,which is mainly caused by the slippage and friction behaviors on the thread and bearing surfaces,and will affect the integrity and reliability of products.Numerous scholars have conducted research on the loosening of threaded fasteners;however,comprehensive reviews on the loosening of threaded fasteners have been scarce.In this review article,we define loosening as a loss of preload and divide it into non-rotational and rotational loosening.The causes and mechanisms of non-rotational and rotational loosening are summarised.Some essential topics regarding loosening under transverse vibration have also attracted significant attention and have been investigated widely,including the loosening curve,critical condition of loosening,and influencing factors of loosening.The research carried out on these three topics is also summarised in this review.It is believed that our work will not only help new researchers quickly understand the state-of-the-art research on loosening,but also increase the knowledge of engineers on this critical subject.In the future,it is important to conduct more quantitative research on local slippage accumulation,and the relationship between local slippage accumulation and rotational loosening,which will have the potential to comprehensively unravel the loosening mechanism,and effectively guide the anti-loosening design of threaded fasteners.展开更多
文摘A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear theory, the critical behaviors and the forming mechanism of pillar instability were discussed by external disturbance , such as stresses waves by blasting , axial force eccentricity ratherish and imperfections in pillar. The results show that the micro-disturbances attenuate with time and they are independence each other when pillar is in the stability state. Their effects on the stability of system are inessential. The correlation degree of disturbances increases sharply and various micro-disturbances are relative and nested reciprocally when the system is in critical state and they also cooperate with each other, which induces system to reach a new state.
文摘The purpose of this paper is to establish the existence of the critical condition of borehole stability during air drilling. Rock Failure Process Analysis Code 20 was used to set up a damage model of the borehole excavated in strain-softening rock. Damage evolution around the borehole was studied by tracking acoustic emission. The study indicates that excavation damaged zone (EDZ) is formed around borehole because of stress concentration after the borehole is excavated. There is a critical condition for borehole stability; the borehole will collapse when the critical damage condition is reached. The critical condition of underground excavation exists not only in elastic and ideal plastic material but in strainsoftening material as well. The research is helpful to developing an evaluation method of borehole stability during air drilling.
基金Supported by the National Science Foundation of China (50674002)
文摘A study of the characteristics of the accumulative rock failure and its evolution byapplication of the group renormalization method were presented. In addition, the interactionand long-range correlated effects between the immediate neighboring units was studied.The concept of mechanical transference for model OFC, employed in the study ofself-organized criticality, and the coefficient a were introduced into the calculation model forgroup renormalization. With the introduction, mechanisms for the drastic increase and decrease of failure intensity of rocks were investigated under similar macro-conditions.
基金Under the auspices of National Natural Science Foundation of China(No. 40971165,41001165)Open Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau(No. K318009902-1315)
文摘Rills are frequently observed on slope farmlands and rill erosion significantly contributes to sediment yields. This paper focuses on reviewing the various factors affecting rill erosion processes and the threshold conditions of rill initiation. Six factors, including rainfall, runoff, soil, topography, vegetation and tillage system, are discussed. Rill initiation and network are explored. Runoff erosivity and soil erodibility are recognized as two direct factors affecting rill erosion and other types of factors may have indirect influences on rill erosion through increasing or decreasing the effects of the direct factors. Certain conditions are necessary for rill initiation and the critical conditions are different with different factors. Future studies should be focused on 1) the dynamic changes of rill networks; 2) the combined effect of multiple factors; and 3) the relationships of threshold values with other related factors.
基金supported by the National Natural Science Foundation of China (No.50905086)China Postdoctoral Science Foundation (No.200904501095)+1 种基金Jiangsu Planned Projects for Postdoctoral Research Funds (No.0901035C)NUAA Research Funding (No.NS2010134)
文摘The hardness, elastic modulus, and scratch resistance of a glass-ceramic rigid substrate were measured by nanoindentation and nanoscratch, and the fracture toughness was measured by indentation using a Vickers indenter. The results show that the hardness and elastic modulus at a peak indentation depth of 200 nm are 9.04 and 94.70 GPa, respectively. These values reflect the properties of the glass-ceramic rigid substrate. The fracture toughness value of the glass-ceramic rigid substrate is 2.63 MPa?m1/2. The material removal mechanisms are seen to be directly related to normal force on the tip. The critical load and scratch depth estimated from the scratch depth profile after scratching and the friction profile are 268.60 mN and 335.10 nm, respectively. If the load and scratch depth are under the critical values, the glass-ceramic rigid substrate will undergo plastic flow rather than fracture. The formula of critical depth of cut described by Bifnao et al. is modified based on the difference of critical scratch depth
基金supported by the National Natural Science Foundation of China (Grant Nos.50979103 and 40901007)
文摘The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.
基金Supported by National Natural Science Foundation of China(Grant Nos.51279042,51105088)
文摘Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is presented. By analyzing the static metal sealing mechanism, the critical condition of the sealing performance is established for this connector and the formulation method of the contact pressure on the sealing surface is created. By the method the minimum mean contact pressure of the 8.625 inch connector is calculated as 361 MPa, which is the constraint condition in the optimum design of connector.The finite element model is created in ANSYS Parametric Design Language(APDL) and the structure is optimized by the zero-order method, with variance of contact pressure as the objective function, and mean contact pressures and plastic strains as constraint variables. The optimization shows that variances of contact pressure on two sealing surfaces decrease by 72.41% and 89.33%, respectively, and mean contact pressures increase by 31.18% and 52.84%, respectively. The comparison of the optimal connectors and non-optimal connectors in the water pressure experiments and bending experiments shows that the sealing ability of optimized connectors is much higher than the rated pressure of 4.5 MPa, and the optimal connectors don’t leak under the bending moment of 52.2 kN·m.This research provides the formulation to solve contact pressure on the sealing surface and a structure optimization method to design the connectors with various dimensions.
基金supported by the National Natural Science Foundation of China(11071198)Scientific Research Fund of SUSE(2011KY03)Scientific Reserch Fund of Sichuan Provincial Education Department(12ZB081)
文摘In this paper, we study a class of p(x)-biharmonic equations with Navier boundary condition. Using the mountain pass theorem, fountain theorem, local linking theorem and symmetric mountain pass theorem, we establish the existence of at least one solution and infinitely many solutions of this problem, respectively.
基金supported by the Major State Basic Research Development Program of China (No.2011CB012900)the National Natural Science Foundation of China (No.51374144)the Shanghai Rising-Star Program (No.14QA1402300)
文摘Isothermal hot compression tests of as-cast high-Cr ultra-super-critical(USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s^(-1). The softening mechanism was dynamic recovery(DRV) at 950°C and the strain rate of 1 s^(-1), whereas it was dynamic recrystallization(DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ ×mol^(-1). The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate(θ)–flow stress(σ) and-θ/σ–σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s^(-1), with a power dissipation efficiency η greater than 31%.
基金Project(51101052) supported by the National Natural Science Foundation of China
文摘Using the Gleeble-1500 D simulator, the hot deformation behavior and dynamic recrystallization critical conditions of the 10%Ti C/Cu-Al2O3(volume fraction) composite were investigated by compression tests at the temperatures from 450 °C to 850 °C with the strain rates from 0.001 s-1 to 1 s-1. The results show that the softening mechanism of the dynamic recrystallization is a feature of high-temperature flow true stress-strain curves of the composite, and the peak stress increases with the decreasing deformation temperature or the increasing strain rate. The thermal deformation activation energy was calculated as 170.732 k J/mol and the constitutive equation was established. The inflection point in the lnθ-ε curve appears and the minimum value of-(lnθ)/ε-ε curve is presented when the critical state is attained for this composite. The critical strain increases with the increasing strain rate or the decreasing deformation temperature. There is linear relationship between critical strain and peak strain, i.e., εc=0.572εp. The predicting model of critical strain is described by the function of εc=1.062×10-2Z0.0826.
基金supported by Scientific Research Foundation of China University of Petroleum(Y081513)National Natural Science Foundation of China(10802099)Doctoral Fund of Ministry of Education of China(200804251520)
文摘The stiction of a thin plate induced by the capillary force has attracted much attention in the broad range of applications. A novel method is presented to calculate the capillary adhesion problem of the plate through analytical method. The expressions of the surface energy, the strain energy and the total potential energy of the plate-substrate system have been analyzed and delineated. By means of continuum mechanics and the principle of minimum potential energy, the governing equation of the plate with an arbitrary shape and the corresponding transversality boundary condition due to the moving bound have been derived. Then the critical adhesion radius of the circular plate has been solved according to the supplementary transversality condition. Thus the deflections of the plates are analytically calculated with different critical adhesion radii. The results may be beneficial to the engineering application and the micro/nanomeasurement.
基金Supported by 973 Program (2003CB415206)China Postdoctoral Science Fetmdation and National Natural Science Foundation (49831010)
文摘Stream blockage by the debris flow from tributary valleys is a common phenomenon in mountainous area,which takes place when large quantities of sediment transported by debris flow reaches a river channel causing its complete or partial blockage.The dam formed by debris flow may causes upstream and downstream flooding,and presents great threat to people and property.Because of the catastrophic influence on people and property,debris-flow dam has attracted many attentions from the researchers and local adm...
基金Project supported by the Natural Science Foundation of Gansu Province of China(No.3Zs042-B25-006)
文摘By using the method of quasi-shells , the nonlinear dynamic equations of three-dimensional single-layer shallow cylindrical reticulated shells with equilateral triangle cell are founded. By using the method of the separating variable function, the transverse displacement of the shallow cylindrical reticulated shells is given under the conditions of two edges simple support. The tensile force is solved out from the compatible equations, a nonlinear dynamic differential equation containing second and third order is derived by using the method of Galerkin. The stability near the equilibrium point is discussed by solving the Floquet exponent and the critical condition is obtained by using Melnikov function. The existence of the chaotic motion of the single-layer shallow cylindrical reticulated shell is approved by using the digital simulation method and Poincare mapping.
文摘In this study,the approximate and exact solutions for the stationary-state of the solids model with neglecting reactant consumption for both non-uniform and uniform temperature systems were applied on gas ignition under a constant pressure condition.The criticality conditions for a slab,an infinite cylinder,and a sphere are determined and discussed using dimensionless temperatures under constant ambient and surface temperatures for a non-uniform temperature system.Exact solution for a Semenov model with convection heat loss was also presented.The solution of the Semenov problem for constant volume or density as a solid and constant pressure were compared.The critical parameterδis calculated and compared with those of Frank-Kamenetskii solution values.The validation of the calculated ignition temperatures with other exact solution and experimental results were offered.The relation between critical parameters form Semenov and F.K.models solution was introduced.
文摘The double-die ironing process is studied by means of UBM. The formulas of deformation load.contact stress on die surface, and tensile stress which acts on workpiece is obtained. Taking account of dirnensional accuracy, a new critical condition of limit reduction in cross section area is put forward for the flrst time. The test experiment indicats that results of theoretical analysis well accord with the actual conditions.[0]
基金Item Sponsored by National Natural Science Foundation of China(51101136)Scientific and Technological Research Foundation for Outstanding Young Talents of Hebei Provincial Universities of China(Y2012034)College Innovation Team Leader Training Program of Hebei Province of China(LJRC012)
文摘Hot compression experiments conducted on a Gleeble-3500thermo-mechanical simulator and metallographic observation tests were employed to study the critical conditions of dynamic recrystallization(DRX)of 316 LN austenitic stainless steel.The true stress-true strain curves of 316 LN were obtained at deformation temperatures ranging from 900℃to 1 200℃and strain rates ranging from 0.001s-1 to 10s-1.Based on the above tests,the critical conditions of DRX were determined and compared with those obtained from work-hardening theory and the Cingara-McQueen flow stress model.Furthermore,the microstructure was observed to validate the calculated results.The ratio of critical strain to peak strain(εc/εp)for 316 LN was determined,and the quantitative relationship between the critical strain and the deformation parameters of 316 LN was elucidated.The results demonstrated that the onset of DRX corresponds to the constant normalized strain hardening rate(Γ),namely,the critical strain hardening rateΓcfor316LN is equal to 0.65.
基金Supported by the Youth FoundationNatural Science Foundation, People's Republic of China.
文摘In this paper, we get the existence of a weak solution of the following inhomogeneous quasilinear elliptic equation with critical growth conditions: where N≥2, f(x,u)~|u|<sup>m-1</sup>e<sup>b|u|<sup>γ</sup></sup>at +∞, with γ=N/N-1, m≥1, b】0.
文摘Chip splitting is a natural chip separation phenomenon that can significantly reduce cutting energy consumption.To reveal its occurrence mechanisms,a method for obtaining its critical conditions through cutting experiments and establishing its critical equation is proposed in this paper.Based on previous research results regarding the relationship between chip removal interference and chip splitting,the control variables that affect chip splitting are identified by analyzing a geometric model of the cutting process.A total of 366 experiments on turning a C45E4 disc workpiece with a high-speed steel double-edged turning tool based on the dichotomy method were conducted and 51 experimental data on chip splitting critical conditions were obtained.Accordingto these experimental data,a critical equation expressed by a finitedegree polynomial with a cutting thickness equal to the other control variables was fitted.By analyzing the critical surface,it was determined that chip splitting followed a law in which the smaller the cutting thickness and the larger the absolute value of the negative rake angle,edge angle,and edge inclination of the tool,the more likely chip splitting was to occur.Through a verification experiment,it was determined that the derived critical equation could accurately predict the occurrence of 95.24%of chip splitting.It was also determined that the occurrence of chip splitting led to a cliff-like drop in the specific total cutting force with a maximum drop of 51.23%.This research lays a foundation for the rational utilization of chip splitting in tool structure parameter design and cutting parameter energy saving optimization.
基金National Key Research and Development Program of China,No.2021YFB2600500National Natural Science Foundation of China,No.52279066Jiangsu Water Conservancy Science and Technology Project,No.2020001。
文摘The evolution of point bars in changing sections of a downstream tidal current limit is periodic. Accordingly, assessing the critical morphology and hydrodynamic characteristics of point bar scour and the sediment transport process of scour sediment bodies can support river regulation and waterway maintenance. The frequent scour of point bars in changing sections of tidal current limits within the Yangtze River directly restricts waterway stability. This study examined the Fujiangsha reach of the Yangtze River, hydrological data on sediment transport, and riverbed topography from 1950. The Jingjiang bank tail exhibited an evolutionary cycle(siltation>scour>siltation), with a primary period ranging from 3–6 years. Additionally, certain morphological and dynamic conditions were necessary for scour. The Datong station flow(Q) ranged from 20,000–40,000 m^(3)·s^(-1)for ≥180 days·yr^(-1), enabling the bank silt layers to widen. Scour occurred during flooding and was concentrated in areas 5.0–7.5 km downstream from Ebizui. When Q≥40,000 m^(3)·s^(-1), scouring occurred in the bank middle and lower reaches, whereas Q≥50,000 m^(3)·s^(-1)for >50 consecutive days, scour occurred at the tail as well. Moreover, the volume of the scour shoals increased with the number of high-flow days(≥60,000 m^(3)·s^(-1)). Bottom sand transport mainly occurred in the low-bank zone. Before the project’s second phase, the longitudinal transport of the scouring sand bodies occurred as follows: Jingjiang bank > low bank on the north side of Shuangjiansha > Fubei anabranch. During the second phase, the longitudinal transport route changed to Jingjiang bank > Fubei anabranch. The Jingjiang bank volume was also reduced;thus, its development was controlled. Owing to changes in the longitudinal transport routes, dredging should be conducted in areas where scouring sand bodies are separately transported from the tail, thereby reducing the load of dredging and maintenance for the Fubei anabranch during dry years.
基金The authors are grateful for support by the National Natural Science Foundation of China(Nos.51935003 and 51675050)the National Defense Fundamental Research Foundation of China(No.JCKY2016204B201)。
文摘Loosening of threaded fasteners is a key failure mode,which is mainly caused by the slippage and friction behaviors on the thread and bearing surfaces,and will affect the integrity and reliability of products.Numerous scholars have conducted research on the loosening of threaded fasteners;however,comprehensive reviews on the loosening of threaded fasteners have been scarce.In this review article,we define loosening as a loss of preload and divide it into non-rotational and rotational loosening.The causes and mechanisms of non-rotational and rotational loosening are summarised.Some essential topics regarding loosening under transverse vibration have also attracted significant attention and have been investigated widely,including the loosening curve,critical condition of loosening,and influencing factors of loosening.The research carried out on these three topics is also summarised in this review.It is believed that our work will not only help new researchers quickly understand the state-of-the-art research on loosening,but also increase the knowledge of engineers on this critical subject.In the future,it is important to conduct more quantitative research on local slippage accumulation,and the relationship between local slippage accumulation and rotational loosening,which will have the potential to comprehensively unravel the loosening mechanism,and effectively guide the anti-loosening design of threaded fasteners.