Knowledge on spatial distribution and sampling size optimization of soil copper (Cu) could lay solid foundations for environmetal quality survey of agricultural soils at county scale. In this investigation, cokrigin...Knowledge on spatial distribution and sampling size optimization of soil copper (Cu) could lay solid foundations for environmetal quality survey of agricultural soils at county scale. In this investigation, cokriging method was used to conduct the interpolation of Cu concentraiton in cropland soil in Shuangliu County, Sichuan Province, China. Based on the original 623 physicochmically measured soil samples, 560, 498, and 432 sub-samples were randomly selected as target variable and soil organic matter (SOM) of the whole original samples as auxiliary variable. Interpolation results using Cokriging under different sampling numbers were evaluated for their applicability in estimating the spatial distribution of soil Cu at county sacle. The results showed that the root mean square error (RMSE) produced by Cokriging decreased from 0.9 to 7.77%, correlation coefficient between the predicted values and the measured increased from 1.76 to 9.76% in comparison with the ordinary Kriging under the corresponding sample sizes. The prediction accuracy using Cokriging was still higher than original 623 data using ordinary Kriging even as sample size reduced 10%, and their interpolation maps were highly in agreement. Therefore, Cokriging was proven to be a more accurate and economic method which could provide more information and benefit for the studies on spatial distribution of soil pollutants at county scale.展开更多
The relationship between long-term fertilization and cropland network for soil fertility and fertilizers in Loess soil of Shannxi soil fauna was studied at the station's experiment research Provincefrom Jul. 2001 to ...The relationship between long-term fertilization and cropland network for soil fertility and fertilizers in Loess soil of Shannxi soil fauna was studied at the station's experiment research Provincefrom Jul. 2001 to Oct. 2002. Six types of long-term fertilizer were carried out for this study including non-fertilizer (CK), abandonment (ABAND), nitrogenous and phosphors and potassium fertilizers combined (NPK), straw and NPK (SNPK), organic material and NPK (MNPK) and 1.5 times MNPK (1.5MNPK). 72 soil samples were collected and 5 495 species of cropland soil fauna obtained by handsorting and Cobb methods at 4 times, belonging to 6 Phyla, 11 Classes, 22 Orders, 2 Superfamilies, 61 Families and 35 Genera. The result showed that different fertilizer had significantly impacted on the cropland soil fauna (F = 2.24, P〈0.007). The number of the cropland soil fauna was related to the soil physicochemical properties caused by long-term fertilization. The result by principal component analysis, focusing on the number of 15 key soil fauna species group's diversity, evenness of community and the total soil fauna individuals indicated that the effects of SNPK, NPK, MNPK and 1.5MNPK were significantly different from that of the cropland soil fauna, in which, SNPK and NPK had the positive effect on cropland soil fauna, and MNPK and 1.5 MNPK had the negative affect, others could not be explained. By principal component I, the synthetic effect of different fertilization on the total soil fauna individuals and the group was most significant, and the effect was little on evenness and diversity. By value of eigenvectors, the maximum one was 9.6248, and the minimum one was - 1.0904, that means the 6 types of fertilization did not affect evenly the cropland soil fauna.展开更多
Soil organic carbon (SOC) is one of the centre issues related to not only soil fertility but also environmental safety. Assessing SOC dynamics in croplands has been a challenge in China for long due to the lack of a...Soil organic carbon (SOC) is one of the centre issues related to not only soil fertility but also environmental safety. Assessing SOC dynamics in croplands has been a challenge in China for long due to the lack of appropriate methodologies and data sources. As an alternative approach for studying SOC dynamics, process-based models are adopted to meet the needs. In this paper, a process-based model, DeNitrification-DeComposition (DNDC), was applied to quantify the SOC storage and the spatial distribution in croplands of China in 2003, with the support of a newly compiled county-level soil/ climate/land use database. The simulated results showed that the total SOC storage in the top layer (0-30 cm) of the 1.18 × 10^8 ha croplands of China is 4.7-5.2 Pg C in 2003 with an average value of 4.95 Pg C. The SOC storage in the northeastern provinces (1.3 Pg C) accounts for about 1/4 of the whole national totals due to their dominantly fertile soils with high organic matter content. SOC density ranges from 3.9 to 4.4 kg C m 2, with an average of 4.2 kg C m^-2, a level is much lower than the world average level. The model results also indicated that high rates of SOC losses occurred in the croplands with the most common cropping patterns in China as like single soybean 〉 maize 〉 paddy 〉 cotton 〉 winter wheat and corn rotation. The results reported in this paper showed that there was still a great potential for improving SOC status in most croplands of China by adopting proper farming practices and land-use pattern. Therefore, long-term policy to protect SOC is urgently needed.展开更多
Land use change significantly influences soil properties. There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties. We compared soil carbon (C)...Land use change significantly influences soil properties. There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties. We compared soil carbon (C) and nitrogen (N) storage and related soil properties in a 50-year cultivation chronosequence of grassland in the agro-pastoral ecotone of Inner Mongolia. Field surveys on land use changes during the period of 1955-2002 were conducted to build a chronosequence of cropland of different ages since the conversion from grassland. The results showed that soil C and N storage, soil texture, and soil nutrient contents varied with land use types and cropland ages (P〈0.01). In the 0-30 cm soil layer, the soil organic carbon (SOC) density was significantly lower in the crop- lands (3.28 kg C/m2 for C50 soil) than in the grasslands (6.32 kg C/m2). After 5, 10, 15, 20, 35, and 50 years of crop planting (years since the onset of cultivation), the SOC losses were 17%, 12%, 19%, 47%, 46%, and 48%, respec- tively, compared with the grasslands. The soil total nitrogen (TN) density of the grasslands was 65 g N/m2, and TN density of the cropland soil was 35 g N/m2 after 50 years of crop planting. Both the SOC and TN densities could be quantitatively determined by a negative exponential function of cropland age (P〈0.0001, R2=0.8528; P〈0.0001, R2=0.9637). The dissolved organic carbon (DOC) content, pH value were decreased; and the soil bulk density and soil available potassium (AK) content, clay content, and sand content were increased since the conversion of grassland into cropland during the 50-year period. Our results show soil nutrients were higher in grassland than in cropland. The conversion of grasslands to croplands induced a loss of soil C storage and changes of related soil properties. The reclamation time of cultivated soil (cropland age) had significant effects on soil properties in the study area.展开更多
Rainfall runoff is a critical hydrological process related to soil erosion and agricultural non-point pollu-tion. In this study, 25 simulation experiments on rainfall were carried out in five runoff plots. Rape (Brass...Rainfall runoff is a critical hydrological process related to soil erosion and agricultural non-point pollu-tion. In this study, 25 simulation experiments on rainfall were carried out in five runoff plots. Rape (Brassica campestris) was planted on the downslope of the plots. Experiments were conducted when the vegetation coverage reached 80%. Each plot was subjected to five rainfall events differing in intensity. The results showed: (1) the runoff coefficients of overland flow and subsurface flow were less than 0.6 and 0.005, respectively; (2) the discharge of overland flow was the quadratic function of time; (3) runoff coefficient was the function of slope gradient and rain-fall intensity. When the slope gradient increased from 8.7% to 46.6%, the runoff coefficient of overland flow first increased and then decreased. The runoff coefficient reached the maximum when the slope gradient was within the range of 17.6%-36.4%; and (4) the process of subsurface flow generation included the increasing phase and reces-sion phase. Discharge was a logarithm function of time in the increasing phase, and an exponential function in the recession phase. Runoff coefficient of subsurface flow decreased first and then increased when the slope gradient varied from 8.7% to 46.6% and was not correlated with rainfall intensity.展开更多
Various kinds of human disturbances on cropland are the main reasons for soil erosion and land degradation.Farming practices in mountainous areas vary greatly among cropland plots because of the heterogeneity of bioph...Various kinds of human disturbances on cropland are the main reasons for soil erosion and land degradation.Farming practices in mountainous areas vary greatly among cropland plots because of the heterogeneity of biophysical conditions and differences in farmers'management behavior.The main purpose of this paper is to develop a composite index of cropland physical disturbance intensity(CLDI)to reflect the plot-scale discrepancy of potential soil erosion in mountainous areas.The study was based on both plot survey and household interview data,collected from six typical catchments in mountainous areas of southwestern China.Four kinds of physical disturbance practices and two kinds of conservation practices during one crop rotation period were synthesized to develop the CLDI index.The rough set theory was referenced to avoid subjectivity during weight allocation.The results show that conventional tillage,deep fertilization,and manual weeding are the main causes of cropland soil erosion,whereas manure application in combination with seasonal fallow reduces soil erosion.Different crop types as well as cropland location factors determine the spatial pattern of CLDI.Crop rotation modes with major crops of tobacco and maize resulted in a maximal CLDI,and cropland plots with a distance radius of 150 meters away from households received the most intensive physical disturbance.These results are critical to help better protect rural environments in mountainous areas.Based on the results,methods to reduce cropland soil erosion are suggested.展开更多
Croplands are often suffering from sand burial in dry regions of northern China. For studying this phenomenon, we carried out a case study of field experiment including four sand burial levels, i.e. shallow (1-3 cm)...Croplands are often suffering from sand burial in dry regions of northern China. For studying this phenomenon, we carried out a case study of field experiment including four sand burial levels, i.e. shallow (1-3 cm), moderate (8-12 cm) and deep (15-20 cm) sand burials, and no sand burial (control, CK), in a typical agro-pastoral transitional zone in Naiman Banner of eastern Inner Mongolia. The aim of this study was to assess the impacts of sand burial on maize (Zea rnays L.) productivity and the soil quality along a gradient of burial depths. Results showed that there was a strong negative effect of sand burial on maize productivity and soil quality, which significantly declined (P〈0.05) under moderate and deep sand burial treatments. In comparison with the CK, the maize yield and above-ground biomass reduced by 47.41% and 39.47%, respectively. The soil silt and clay, soil water, soil organic carbon and total nitrogen contents under deep sand burial decreased by 67.85%, 40.32%, 86.52% and 82.11%, respectively, while microbial biomass carbon, microbial abundance and enzyme activity decreased by 89.78%, 42.28%-79.66% and 69.51%-97.71%, respectively. There was no significant effect on crop productivity and soil quality with shallow sand burial treatment. The correlations analysis showed that there was significant positive correlations of both maize yield and above-ground biomass with soil silt and clay, soil organic carbon and total nitrogen contents, pH, electrical conductivity, soil water content, microbial abundance and biomass and all tested soil enzyme activities. Stepwise regression analysis indicated that soil water and total nitrogen contents, urease, cellobiohydrolase and peroxidase activities were key determining factors for maize productivity. This combination of factors explains reason of the decreased maize productivity with deep sand burial. We found that degradation of cropland as a result of sand burial changed soil physical-chemical properties and soil enzyme activities in the plow layer, and decreased overall maize productivity. Furthermore, decreased soil enzyme activity was a better indicator to predict sandy cropland degradation.展开更多
Based on 3 m×3 m grid in sloping cornfield with soil auger in Yingwugou Small Watershed of the Dan River Basin,a total of 39sampling points were collected,and soil water content and nutrient content were measured...Based on 3 m×3 m grid in sloping cornfield with soil auger in Yingwugou Small Watershed of the Dan River Basin,a total of 39sampling points were collected,and soil water content and nutrient content were measured in different soil depths.Meanwhile,the soil properties of different depth have been analyzed by traditional statistical and geo-statistics approaches.The results showed:the mean value of total nitrogen and soil organic carbon reduced as soil depth increased in general.But soil water content increased as the soil depth increased.The change of total phosphorus with soil depth was not obvious.The total nitrogen,soil water content,soil organic carbon and total phosphorus presented a moderate intensity variation and strong spatial dependence.In the four sampling depths,semi-variance model can simulate spatial structure of total nitrogen,soil water content and total phosphorus in 0 to 10 cm and 10 to 20 cm well.But the spatial structure of soil organic carbon was not good,which could not be simulated with semi-variance model.The analysis with Kriging interpolation showed that,the total nitrogen,soil water content and total phosphorus presented layered distribution in 0 to 10 cm and 10 to 20 cm;when the spatial distribution changed to 10 to 20cm from 0 to 10 cm,the average total nitrogen content reduced to from 0.598 g/kg 0.310 g/kg,while the average soil water content and total phosphorus increased from 12.988%to 15.439%and from 0.229 g/kg to 0.366 g/kg,respectively.展开更多
Restoration of cropland(termed 'Farm') after abandonment including shrubs(termed 'Shrub'),trees(termed 'Tree') and natural grassland(termed 'Grass') has become a routine process aimed t...Restoration of cropland(termed 'Farm') after abandonment including shrubs(termed 'Shrub'),trees(termed 'Tree') and natural grassland(termed 'Grass') has become a routine process aimed to improve land productivity and control desertification. During this restoration process, soil macro-faunal diversity, and trophic structure were investigated at four types of sites(Farm, Shrub, Tree, and Grass)during growing season in the semi-arid agro-pasture zone of northern China. Results indicated that the Staphylinidae family was found to dominate at the Grass, Shrub, and Tree sites, whiles larval Pyralidae individuals were found at the Grass site only. The density of the omnivores(i.e., Formicidae family) was significantly(P<0.05) greater at the Grass site than at the Tree and Farm sites. The total density and richness of predator and phytophages were found to be markedly(P<0.05) greater at the Grass site than at the Farm site. Meanwhile, we found the taxon richness of predators was significantly(P<0.05) higher at the Shrub site than at the Farm and Tree sites. Compared with the Farm and afforested Shrub/Tree sites,the Grass site had greater density, taxon richness, and Shannon index(P<0.05). In conclusion, natural restoration of abandoned croplands toward grassland was an effective strategy relative to artificial afforestation for improvement of soil biological diversity. Moreover, planting shrub is a preferable measure in abandoned croplands for land development in the semi-arid agro-pasture zone of northern China.展开更多
为研究撂荒年限对农田土壤的影响,本试验于8月植物生长旺季进行,选取未撂荒农田(CK)、撂荒7年(7a)、15年(15a)和30年(30a)的农田采集土壤样品,室内计算分析土壤理化特征的变化规律,结果表明,撂荒显著提高了土壤容重,降低了土壤孔隙度和...为研究撂荒年限对农田土壤的影响,本试验于8月植物生长旺季进行,选取未撂荒农田(CK)、撂荒7年(7a)、15年(15a)和30年(30a)的农田采集土壤样品,室内计算分析土壤理化特征的变化规律,结果表明,撂荒显著提高了土壤容重,降低了土壤孔隙度和土壤pH。与未撂荒地对比,撂荒显著提高了土壤有机碳(Soil organic carbon,SOC)、全氮(Soil total nitrogen,TN)和全磷(Soil total phosphorus,TP)的含量。因此,长期撂荒对土壤养分状况具有显著改善作用。不同撂荒年限土壤含水量与土壤养分指标均呈显著正相关,长期撂荒下更少的蒸散耗水量减少了土壤水分的损失,使土壤养分得到了积累。本研究可为坝上农牧交错带撂荒地的合理规划提供理论支撑。展开更多
The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four ...The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four soil types (i.e., Ari-Sandic Primosols, Calci-Orthic Aridosols, Siltigi-Otrthic Anthrosols, and Ustic Cambosols) in the marginal farmland in the oasis of the middle Hexi Corridor region and was used to determine the characteristics of soil aggregates. The composition of dry- and wet- sieved aggregates and the physical and chemical properties (including soil particle distribution, soil organic carbon (SOC), calcium carbonate (CaCO3), and oxides of Fe^3+ and Al^3+) of the selected soils were analyzed. The results show that soil particle size distribution is dominated by fine sand fraction in most of soils except Ustic Cambosols. Soil organic carbon concentration is 5.88 ± 2.52 g kg^-1 on average, ranging from 4.75 g kg^-1 in Ari-Sandic Primosols to 10.51 g kg^-1 in Ustic Cambosols. The soils have high calcium carbonate (CaCO3) concentration, ranging from 84.7 to 164.8 g kg^-1, which is increased with soil fine particle and organic carbon content. The percentage of 〉0.25 mm dry aggregates ranges from 65.2% in Ari-Sandic Primosols to 94.6% in Ustic Cambosols, and large dry blocky aggregates (〉5 mm) is dominant in all soils. The mean weight diameter of dry aggregates (DMWD) ranges from 3.2 mm to 5.5 mm. The percentage of 〉0.25 mm water-stable aggregate is from 23.8% to 45.4%. The percentage of aggregate destruction (PAD) is from 52.4% to 66.8%, which shows a weak aggregate stability. Ari-Sandic Primosols has the highest PAD. The distribution and characteristics of soil aggregates are in favor of controlling soil wind erosion. However, the stability of aggregate of all soils is weak and soils are prone to disperse and harden after irrigation. The mass of macro-aggregates and DMWD are positively significantly correlated with the contents of soil clay and silt, soil organic carbon (SOC), CaCO3, and oxides of Fe^3+ and Al^3+. Soil fine silt and clay, SOC and CaCO3 are important agents of aggregation in this region, and the effect of SOC and CaCO3 on aggregate stability is more significant than that of soil silt and clay. Converting cropland to alfalfa forage land can increase SOC concentration, and in turn, enhance the formation of aggregates and stability. For the marginal farmlands in this fragile ecological area, converting cropland to alfalfa grassland or performing crop-grass rotation is an effective and basic strategy to improve soil structure and quality, to mitigate soil wind erosion, and to enhance oasis agricultural sustainability.展开更多
基金supported by the Youth Foundation from Sichuan Education Bureau (2006B009)Key Project from Sichuan Education Bureau (2006A008)Sichuan Youth Science & Technology Foundation,China (06ZQ026-020)
文摘Knowledge on spatial distribution and sampling size optimization of soil copper (Cu) could lay solid foundations for environmetal quality survey of agricultural soils at county scale. In this investigation, cokriging method was used to conduct the interpolation of Cu concentraiton in cropland soil in Shuangliu County, Sichuan Province, China. Based on the original 623 physicochmically measured soil samples, 560, 498, and 432 sub-samples were randomly selected as target variable and soil organic matter (SOM) of the whole original samples as auxiliary variable. Interpolation results using Cokriging under different sampling numbers were evaluated for their applicability in estimating the spatial distribution of soil Cu at county sacle. The results showed that the root mean square error (RMSE) produced by Cokriging decreased from 0.9 to 7.77%, correlation coefficient between the predicted values and the measured increased from 1.76 to 9.76% in comparison with the ordinary Kriging under the corresponding sample sizes. The prediction accuracy using Cokriging was still higher than original 623 data using ordinary Kriging even as sample size reduced 10%, and their interpolation maps were highly in agreement. Therefore, Cokriging was proven to be a more accurate and economic method which could provide more information and benefit for the studies on spatial distribution of soil pollutants at county scale.
文摘The relationship between long-term fertilization and cropland network for soil fertility and fertilizers in Loess soil of Shannxi soil fauna was studied at the station's experiment research Provincefrom Jul. 2001 to Oct. 2002. Six types of long-term fertilizer were carried out for this study including non-fertilizer (CK), abandonment (ABAND), nitrogenous and phosphors and potassium fertilizers combined (NPK), straw and NPK (SNPK), organic material and NPK (MNPK) and 1.5 times MNPK (1.5MNPK). 72 soil samples were collected and 5 495 species of cropland soil fauna obtained by handsorting and Cobb methods at 4 times, belonging to 6 Phyla, 11 Classes, 22 Orders, 2 Superfamilies, 61 Families and 35 Genera. The result showed that different fertilizer had significantly impacted on the cropland soil fauna (F = 2.24, P〈0.007). The number of the cropland soil fauna was related to the soil physicochemical properties caused by long-term fertilization. The result by principal component analysis, focusing on the number of 15 key soil fauna species group's diversity, evenness of community and the total soil fauna individuals indicated that the effects of SNPK, NPK, MNPK and 1.5MNPK were significantly different from that of the cropland soil fauna, in which, SNPK and NPK had the positive effect on cropland soil fauna, and MNPK and 1.5 MNPK had the negative affect, others could not be explained. By principal component I, the synthetic effect of different fertilization on the total soil fauna individuals and the group was most significant, and the effect was little on evenness and diversity. By value of eigenvectors, the maximum one was 9.6248, and the minimum one was - 1.0904, that means the 6 types of fertilization did not affect evenly the cropland soil fauna.
基金supported by a bilateral scientific cooperation project financed by UGent-BOF, Belgiumand the Ministry of Science and Technology, China(2005-2)the Non-Profit Research Foundation for Agriculture of China (200803036)
文摘Soil organic carbon (SOC) is one of the centre issues related to not only soil fertility but also environmental safety. Assessing SOC dynamics in croplands has been a challenge in China for long due to the lack of appropriate methodologies and data sources. As an alternative approach for studying SOC dynamics, process-based models are adopted to meet the needs. In this paper, a process-based model, DeNitrification-DeComposition (DNDC), was applied to quantify the SOC storage and the spatial distribution in croplands of China in 2003, with the support of a newly compiled county-level soil/ climate/land use database. The simulated results showed that the total SOC storage in the top layer (0-30 cm) of the 1.18 × 10^8 ha croplands of China is 4.7-5.2 Pg C in 2003 with an average value of 4.95 Pg C. The SOC storage in the northeastern provinces (1.3 Pg C) accounts for about 1/4 of the whole national totals due to their dominantly fertile soils with high organic matter content. SOC density ranges from 3.9 to 4.4 kg C m 2, with an average of 4.2 kg C m^-2, a level is much lower than the world average level. The model results also indicated that high rates of SOC losses occurred in the croplands with the most common cropping patterns in China as like single soybean 〉 maize 〉 paddy 〉 cotton 〉 winter wheat and corn rotation. The results reported in this paper showed that there was still a great potential for improving SOC status in most croplands of China by adopting proper farming practices and land-use pattern. Therefore, long-term policy to protect SOC is urgently needed.
基金funded by the National Natural Science Foundation of China(41165010)the State Key Basic Research and Development Plan of China(2007CB106806)the State Key Laboratory Fund of Institute of Atmospheric Physics,Chinese Academy of Sciences(LAPC-KF-2008-03)
文摘Land use change significantly influences soil properties. There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties. We compared soil carbon (C) and nitrogen (N) storage and related soil properties in a 50-year cultivation chronosequence of grassland in the agro-pastoral ecotone of Inner Mongolia. Field surveys on land use changes during the period of 1955-2002 were conducted to build a chronosequence of cropland of different ages since the conversion from grassland. The results showed that soil C and N storage, soil texture, and soil nutrient contents varied with land use types and cropland ages (P〈0.01). In the 0-30 cm soil layer, the soil organic carbon (SOC) density was significantly lower in the crop- lands (3.28 kg C/m2 for C50 soil) than in the grasslands (6.32 kg C/m2). After 5, 10, 15, 20, 35, and 50 years of crop planting (years since the onset of cultivation), the SOC losses were 17%, 12%, 19%, 47%, 46%, and 48%, respec- tively, compared with the grasslands. The soil total nitrogen (TN) density of the grasslands was 65 g N/m2, and TN density of the cropland soil was 35 g N/m2 after 50 years of crop planting. Both the SOC and TN densities could be quantitatively determined by a negative exponential function of cropland age (P〈0.0001, R2=0.8528; P〈0.0001, R2=0.9637). The dissolved organic carbon (DOC) content, pH value were decreased; and the soil bulk density and soil available potassium (AK) content, clay content, and sand content were increased since the conversion of grassland into cropland during the 50-year period. Our results show soil nutrients were higher in grassland than in cropland. The conversion of grasslands to croplands induced a loss of soil C storage and changes of related soil properties. The reclamation time of cultivated soil (cropland age) had significant effects on soil properties in the study area.
基金supported by the National Natural Science Foundation of China (Grant No. 40871134)the State Key Laboratory of Earth Surface Processes and Resource Ecology
文摘Rainfall runoff is a critical hydrological process related to soil erosion and agricultural non-point pollu-tion. In this study, 25 simulation experiments on rainfall were carried out in five runoff plots. Rape (Brassica campestris) was planted on the downslope of the plots. Experiments were conducted when the vegetation coverage reached 80%. Each plot was subjected to five rainfall events differing in intensity. The results showed: (1) the runoff coefficients of overland flow and subsurface flow were less than 0.6 and 0.005, respectively; (2) the discharge of overland flow was the quadratic function of time; (3) runoff coefficient was the function of slope gradient and rain-fall intensity. When the slope gradient increased from 8.7% to 46.6%, the runoff coefficient of overland flow first increased and then decreased. The runoff coefficient reached the maximum when the slope gradient was within the range of 17.6%-36.4%; and (4) the process of subsurface flow generation included the increasing phase and reces-sion phase. Discharge was a logarithm function of time in the increasing phase, and an exponential function in the recession phase. Runoff coefficient of subsurface flow decreased first and then increased when the slope gradient varied from 8.7% to 46.6% and was not correlated with rainfall intensity.
基金jointly funded by the National Key Basic Research Program of China (973 program) (Grant NO.2015CB452702)the National Natural Science Foundation of China (Grant NO.41371539)partially supported by the CDM Fund Grant Project in China (Grant NO. 2013030)
文摘Various kinds of human disturbances on cropland are the main reasons for soil erosion and land degradation.Farming practices in mountainous areas vary greatly among cropland plots because of the heterogeneity of biophysical conditions and differences in farmers'management behavior.The main purpose of this paper is to develop a composite index of cropland physical disturbance intensity(CLDI)to reflect the plot-scale discrepancy of potential soil erosion in mountainous areas.The study was based on both plot survey and household interview data,collected from six typical catchments in mountainous areas of southwestern China.Four kinds of physical disturbance practices and two kinds of conservation practices during one crop rotation period were synthesized to develop the CLDI index.The rough set theory was referenced to avoid subjectivity during weight allocation.The results show that conventional tillage,deep fertilization,and manual weeding are the main causes of cropland soil erosion,whereas manure application in combination with seasonal fallow reduces soil erosion.Different crop types as well as cropland location factors determine the spatial pattern of CLDI.Crop rotation modes with major crops of tobacco and maize resulted in a maximal CLDI,and cropland plots with a distance radius of 150 meters away from households received the most intensive physical disturbance.These results are critical to help better protect rural environments in mountainous areas.Based on the results,methods to reduce cropland soil erosion are suggested.
基金financially supported by the National Natural Science Foundation of China (41401620,41271007)the Hundred Talents Program of Chinese Academy of Sciences (Y451H31001,Y551821001)the Key Laboratory of Desert and Desertification Foundation from Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences (KLDD-2014-010)
文摘Croplands are often suffering from sand burial in dry regions of northern China. For studying this phenomenon, we carried out a case study of field experiment including four sand burial levels, i.e. shallow (1-3 cm), moderate (8-12 cm) and deep (15-20 cm) sand burials, and no sand burial (control, CK), in a typical agro-pastoral transitional zone in Naiman Banner of eastern Inner Mongolia. The aim of this study was to assess the impacts of sand burial on maize (Zea rnays L.) productivity and the soil quality along a gradient of burial depths. Results showed that there was a strong negative effect of sand burial on maize productivity and soil quality, which significantly declined (P〈0.05) under moderate and deep sand burial treatments. In comparison with the CK, the maize yield and above-ground biomass reduced by 47.41% and 39.47%, respectively. The soil silt and clay, soil water, soil organic carbon and total nitrogen contents under deep sand burial decreased by 67.85%, 40.32%, 86.52% and 82.11%, respectively, while microbial biomass carbon, microbial abundance and enzyme activity decreased by 89.78%, 42.28%-79.66% and 69.51%-97.71%, respectively. There was no significant effect on crop productivity and soil quality with shallow sand burial treatment. The correlations analysis showed that there was significant positive correlations of both maize yield and above-ground biomass with soil silt and clay, soil organic carbon and total nitrogen contents, pH, electrical conductivity, soil water content, microbial abundance and biomass and all tested soil enzyme activities. Stepwise regression analysis indicated that soil water and total nitrogen contents, urease, cellobiohydrolase and peroxidase activities were key determining factors for maize productivity. This combination of factors explains reason of the decreased maize productivity with deep sand burial. We found that degradation of cropland as a result of sand burial changed soil physical-chemical properties and soil enzyme activities in the plow layer, and decreased overall maize productivity. Furthermore, decreased soil enzyme activity was a better indicator to predict sandy cropland degradation.
基金Supported by the Natural Science Foundations of China(41071182)the Natural Science Foundations of Shaanxi Province(2011JE008)the Colleges Key Laboratory Science Research Program of Shaanxi Province(12JS065)
文摘Based on 3 m×3 m grid in sloping cornfield with soil auger in Yingwugou Small Watershed of the Dan River Basin,a total of 39sampling points were collected,and soil water content and nutrient content were measured in different soil depths.Meanwhile,the soil properties of different depth have been analyzed by traditional statistical and geo-statistics approaches.The results showed:the mean value of total nitrogen and soil organic carbon reduced as soil depth increased in general.But soil water content increased as the soil depth increased.The change of total phosphorus with soil depth was not obvious.The total nitrogen,soil water content,soil organic carbon and total phosphorus presented a moderate intensity variation and strong spatial dependence.In the four sampling depths,semi-variance model can simulate spatial structure of total nitrogen,soil water content and total phosphorus in 0 to 10 cm and 10 to 20 cm well.But the spatial structure of soil organic carbon was not good,which could not be simulated with semi-variance model.The analysis with Kriging interpolation showed that,the total nitrogen,soil water content and total phosphorus presented layered distribution in 0 to 10 cm and 10 to 20 cm;when the spatial distribution changed to 10 to 20cm from 0 to 10 cm,the average total nitrogen content reduced to from 0.598 g/kg 0.310 g/kg,while the average soil water content and total phosphorus increased from 12.988%to 15.439%and from 0.229 g/kg to 0.366 g/kg,respectively.
基金supported by the National Natural Science Foundation of China (41661054 41867005)+4 种基金Project for Top Young Talent Candidates of Ningxia (RQ0010)Science Research Foundation of Ningxia Higher Education (NGY2018007)Ningxia Natural Science Foundation (2018AAC02004)Specialized Foundation for Fundamental Condition Construction in Ningxia Science and Technology (2018DPC05021)the Project of First-Class University of Western China for Key Laboratory of Ningxia University (NXYLXK2017B06, GZXM2017001)
文摘Restoration of cropland(termed 'Farm') after abandonment including shrubs(termed 'Shrub'),trees(termed 'Tree') and natural grassland(termed 'Grass') has become a routine process aimed to improve land productivity and control desertification. During this restoration process, soil macro-faunal diversity, and trophic structure were investigated at four types of sites(Farm, Shrub, Tree, and Grass)during growing season in the semi-arid agro-pasture zone of northern China. Results indicated that the Staphylinidae family was found to dominate at the Grass, Shrub, and Tree sites, whiles larval Pyralidae individuals were found at the Grass site only. The density of the omnivores(i.e., Formicidae family) was significantly(P<0.05) greater at the Grass site than at the Tree and Farm sites. The total density and richness of predator and phytophages were found to be markedly(P<0.05) greater at the Grass site than at the Farm site. Meanwhile, we found the taxon richness of predators was significantly(P<0.05) higher at the Shrub site than at the Farm and Tree sites. Compared with the Farm and afforested Shrub/Tree sites,the Grass site had greater density, taxon richness, and Shannon index(P<0.05). In conclusion, natural restoration of abandoned croplands toward grassland was an effective strategy relative to artificial afforestation for improvement of soil biological diversity. Moreover, planting shrub is a preferable measure in abandoned croplands for land development in the semi-arid agro-pasture zone of northern China.
文摘为研究撂荒年限对农田土壤的影响,本试验于8月植物生长旺季进行,选取未撂荒农田(CK)、撂荒7年(7a)、15年(15a)和30年(30a)的农田采集土壤样品,室内计算分析土壤理化特征的变化规律,结果表明,撂荒显著提高了土壤容重,降低了土壤孔隙度和土壤pH。与未撂荒地对比,撂荒显著提高了土壤有机碳(Soil organic carbon,SOC)、全氮(Soil total nitrogen,TN)和全磷(Soil total phosphorus,TP)的含量。因此,长期撂荒对土壤养分状况具有显著改善作用。不同撂荒年限土壤含水量与土壤养分指标均呈显著正相关,长期撂荒下更少的蒸散耗水量减少了土壤水分的损失,使土壤养分得到了积累。本研究可为坝上农牧交错带撂荒地的合理规划提供理论支撑。
文摘The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four soil types (i.e., Ari-Sandic Primosols, Calci-Orthic Aridosols, Siltigi-Otrthic Anthrosols, and Ustic Cambosols) in the marginal farmland in the oasis of the middle Hexi Corridor region and was used to determine the characteristics of soil aggregates. The composition of dry- and wet- sieved aggregates and the physical and chemical properties (including soil particle distribution, soil organic carbon (SOC), calcium carbonate (CaCO3), and oxides of Fe^3+ and Al^3+) of the selected soils were analyzed. The results show that soil particle size distribution is dominated by fine sand fraction in most of soils except Ustic Cambosols. Soil organic carbon concentration is 5.88 ± 2.52 g kg^-1 on average, ranging from 4.75 g kg^-1 in Ari-Sandic Primosols to 10.51 g kg^-1 in Ustic Cambosols. The soils have high calcium carbonate (CaCO3) concentration, ranging from 84.7 to 164.8 g kg^-1, which is increased with soil fine particle and organic carbon content. The percentage of 〉0.25 mm dry aggregates ranges from 65.2% in Ari-Sandic Primosols to 94.6% in Ustic Cambosols, and large dry blocky aggregates (〉5 mm) is dominant in all soils. The mean weight diameter of dry aggregates (DMWD) ranges from 3.2 mm to 5.5 mm. The percentage of 〉0.25 mm water-stable aggregate is from 23.8% to 45.4%. The percentage of aggregate destruction (PAD) is from 52.4% to 66.8%, which shows a weak aggregate stability. Ari-Sandic Primosols has the highest PAD. The distribution and characteristics of soil aggregates are in favor of controlling soil wind erosion. However, the stability of aggregate of all soils is weak and soils are prone to disperse and harden after irrigation. The mass of macro-aggregates and DMWD are positively significantly correlated with the contents of soil clay and silt, soil organic carbon (SOC), CaCO3, and oxides of Fe^3+ and Al^3+. Soil fine silt and clay, SOC and CaCO3 are important agents of aggregation in this region, and the effect of SOC and CaCO3 on aggregate stability is more significant than that of soil silt and clay. Converting cropland to alfalfa forage land can increase SOC concentration, and in turn, enhance the formation of aggregates and stability. For the marginal farmlands in this fragile ecological area, converting cropland to alfalfa grassland or performing crop-grass rotation is an effective and basic strategy to improve soil structure and quality, to mitigate soil wind erosion, and to enhance oasis agricultural sustainability.