To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing...To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.展开更多
Three types of ligands have been developed for copper-catalyzed Ullmann cross coupling reaction of bromaminic acid with amines in aqueous solution. Ligands with large steric hindrance and strong electron-donating capa...Three types of ligands have been developed for copper-catalyzed Ullmann cross coupling reaction of bromaminic acid with amines in aqueous solution. Ligands with large steric hindrance and strong electron-donating capacity were beneficial to the reaction. UV–Vis and CV analyses demonstrated that these ligands had strong coordination with copper(I), implying the effect of ligand coordination ability on the stability and catalytic activity of catalytic system.展开更多
Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchro...Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchronous driving scheme based on semi-closed-loop cross- coupling integrated feedforward control is proposed. The scheme comprises a position error cross-coupling feedfor-ward control and a load torque identification with feed- forward control. A digital integrated simulation system for the dual servo synchronous drive system is established. Using a 20 t servo broacher, performance analysis of the scheme is conducted based on this simulation system and the simulation results show that systems with traditional parallel or single control have problems when the work- table works with an unbalanced load. However, the system with proposed scheme shows good synchronous perfor- mance and positional accuracy. Broaching tests are performed and the experimental results show that the maximum dual axis synchronization error of the system is only 8μm during acceleration and deceleration processes and the error between the actual running position and the given position is almost zero. A double position servo synchronous driving scheme is presented based on crosscoupled integrated feedforward compensation control, which can improve the synchronization precision.展开更多
A pneumatic parallel platform driven by an air cylinder and three circumambient pneumatic muscles was considered. Firstly, a mathematical model of the pneumatic servo system was developed for the MIMO nonlinear model-...A pneumatic parallel platform driven by an air cylinder and three circumambient pneumatic muscles was considered. Firstly, a mathematical model of the pneumatic servo system was developed for the MIMO nonlinear model-based controller designed. The pneumatic muscles were controlled by three proportional position valves, and the air cylinder was controlled by a proportional pressure valve. As the forward kinematics of this structure had no analytical solution, the control strategy should be designed in joint space. A cross-coupling integral adaptive robust controller(CCIARC) which combined cross-coupling control strategy and traditional adaptive robust control(ARC) theory was developed by back-stepping method to accomplish trajectory tracking control of the parallel platform. The cross-coupling part of the controller stabilized the length error in joint space as well as the synchronization error, and the adaptive robust control part attenuated the adverse effects of modelling error and disturbance. The force character of the pneumatic muscles was difficult to model precisely, so the on-line recursive least square estimation(RLSE) method was employed to modify the model compensation. The projector mapping method was used to condition the RLSE algorithm to bound the parameters estimated. An integral feedback part was added to the traditional robust function to reduce the negative influence of the slow time-varying characteristic of pneumatic muscles and enhance the ability of trajectory tracking. The stability of the controller designed was proved through Laypunov's theory. Various contrast controllers were designed to testify the newly designed components of the CCIARC. Extensive experiments were conducted to illustrate the performance of the controller.展开更多
Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O...Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O,N)usually requires air or moisture‐sensitive and strong reducing agents,which limit the feasibility of substrate scope.Herein we describe a photo‐induced reductive cross‐coupling reaction of aldehydes,ketones and imines with electron‐deficient arenes(aromatic nitriles)using fac‐Ir(ppy)3as a photocatalyst and diisopropylethylamine(DIPEA)as a terminal reductant under visible light irradiation.Mild conditions and high yields mean that this new polarity inversion strategy can be used with aryl‐substituted alcohols and amines.Spectroscopic studies and control experiments have demonstrated the oxidative quenching of Ir(ppy)3*by electron‐deficient arenes involved in the key step for the C–C bond formation.展开更多
A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired ...A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired products in moderate to excellent yields, using Cu(OAc)2 as the catalyst and Et3N as the solvent.展开更多
Enamines, promoted by the samarium/samarium diiodide mixed reagent, were synthesized via the cross-coupling of thioamides and diarylketones in good yields.
The present paper deals with the polymerization of ( R ) 3,3′ diiodo 2,2′ binaphtho 20 crown 6 with \{ p divinylbenzene\} under Heck coupling reaction condition. Both the monomers and the polymer were analyzed by NM...The present paper deals with the polymerization of ( R ) 3,3′ diiodo 2,2′ binaphtho 20 crown 6 with \{ p divinylbenzene\} under Heck coupling reaction condition. Both the monomers and the polymer were analyzed by NMR, FTIR, UV, CD, fluorescent spectroscopy, polarimetry, GPC and elemental analysis. The polymer can emit a strong blue fluorescence and is expected to have the potential application in the polarized blue light emitting sensors. The chiral conjugated polymer exhibits a strong Cotton effect in its Circular Dichroism(CD ) spectrum, indicating the high rigidity of the polymer backbone.展开更多
Highly dispersed palladium nanoparticles were synthesized in the presence of immobilized ionic liquid on mesoporous silica SBA-15.PdNPs(2.4 nm)_me-Im@SBA-15 catalyst was prepared by the reduction using NaBH_4 as the r...Highly dispersed palladium nanoparticles were synthesized in the presence of immobilized ionic liquid on mesoporous silica SBA-15.PdNPs(2.4 nm)_me-Im@SBA-15 catalyst was prepared by the reduction using NaBH_4 as the reducing agent with controlled feed rate and has been investigated as ligand-free catalyst for Suzuki–Miyaura cross-coupling reaction at room temperature in aqueous solution under air.PdNPs catalyst was also prepared in situ from PdCl4_me-Im@SBA-15 during the reaction and demonstrated high activity and stability towards nitrobenzene hydrogenation at high temperature. Both catalysts were reusable at least for four recycle processes without significant loss in activity with simple procedure. The catalysts were characterized by TEM, EXAFS, FTIR and XPS.展开更多
This paper reports that an exact quantum close coupling calculation is carried out for rotational excitation in Ne HF collisions on the available anisotropic potential. Partial cross sections are obtained separately a...This paper reports that an exact quantum close coupling calculation is carried out for rotational excitation in Ne HF collisions on the available anisotropic potential. Partial cross sections are obtained separately at the incident energies of 48.35, 75, 120 and 150meV. The reliability of the results is demonstrated by comparison with previously published theoretical findings. Based on the calculations, the effect of the potential energy surface on the excitation partial cross sections is discussed in detail.展开更多
The enhancement of interface bonding between cement and polymerand the structural reticula- tion of the water-soluble polymer areproposed to minimize the shortening of the mechanical properties ofmacro-de- fect-free(M...The enhancement of interface bonding between cement and polymerand the structural reticula- tion of the water-soluble polymer areproposed to minimize the shortening of the mechanical properties ofmacro-de- fect-free(MDF)cement based composites at high relativehumidity. The MDF composites incorporated with vari- ouscross-coupling agents studied experimentally. The results show thatthe MDF composites modified with small amounts of cross-couplingagent had raised mechanical properties, but it is more important thatthe modified MDF composites had a significant increase in waterresistance compared to the original one.展开更多
A mild, cascade type methodology was developed for the synthesis of polyphenolic ethers by the palladium-catalyzed cross coupling of phenols and halo compounds under microwave heating. In most cases, reactions run in ...A mild, cascade type methodology was developed for the synthesis of polyphenolic ethers by the palladium-catalyzed cross coupling of phenols and halo compounds under microwave heating. In most cases, reactions run in neat conditions and in some cases, IPA/water mixture, and 1,4-dioxane were employed as solvents to furnish the products. By applying this new method, we were able to synthesize and purify a good number of polyether compounds with complete spectral data.展开更多
The possibility to carry out Cu-catalyzed cross-couplings under ligandless conditions was studied. It was found that by using K3PO4 as the base, the cross-coupling could proceed successfully between aryl iodides and s...The possibility to carry out Cu-catalyzed cross-couplings under ligandless conditions was studied. It was found that by using K3PO4 as the base, the cross-coupling could proceed successfully between aryl iodides and several types of nucleophiles. Aryl bromides were completely inactive under the same reaction conditions.展开更多
Z)-á-Bromovinylstannanes undergo the cross-coupling reaction with alkynyl iodides in the presence of Pd(PPh3)4 and CuI in THF at room temperature to afford stereoselectively (E)-1, 3- enynyl bromides in good yields.
This paper aims to introduce a quadrature VCO (voltage control oscillator) which applies superharmonic coupling. The presented quadrature VCO is suitable to be used, both with 2 × subharmonic mixers, as well as 4...This paper aims to introduce a quadrature VCO (voltage control oscillator) which applies superharmonic coupling. The presented quadrature VCO is suitable to be used, both with 2 × subharmonic mixers, as well as 4×subharmonic mixers. It would be impossible to avoid the presence of harmonics in CMOS VCO circuits. These harmonics are in general, undesirable signals which tend to accompany the desired fundamental signal. There are common-mode nodes (similar to those in the two source nodes in a cross-coupled VCO) in deferential VCO at which higher-order harmonics are present while the fundamental is absent in essence. We can make use of these second-order harmonics which are present at the common-mode nodes of two VCO in order to implement a quadrature connection between the fundamental outputs. The technique through which this is done is called superharmonic coupling. This CMOS quadrature VCO which applies active superharmonic coupling puts an excellent performance in show, with an output power –0.942 dBm for fundamental and –9.751 dBm for subharmonic, phase noise –107.2 dBc/Hz for fundamental and –114.8 dBc/Hz at a 1MHz offset. All of circuit applied are designed and simulated by ADS, 2008.展开更多
By the two-scale homogenization approach we justify a two-scale model of ion transport through a layered membrane, with flows being driven by a pressure gradient and an external electrical field. By up-scaling, the el...By the two-scale homogenization approach we justify a two-scale model of ion transport through a layered membrane, with flows being driven by a pressure gradient and an external electrical field. By up-scaling, the electroosmotic flow equations in horizontal thin slits separated by thin solid layers are approximated by a homogenized system of macroscale equations in the form of the Poisson equation for induced vertical electrical field and Onsager's reciprocity relations between global fluxes (hydrodynamic and electric) and forces (horizontal pressure gradient and external electrical field). In addition, the two-scale approach provides macroscopic mobility coefficients in the Onsager relations. On this way, the cross-coupling kinetic coefficient is obtained in a form which does involves the ζ -potential among the data provided the surface current is negligible.展开更多
Phenolic compounds present in medicinal and edible plants such as flavonoids, chalcones, coumarins, quinones, and phenolic acids. The antioxidant potential of phenolic compounds shows potent activities for cancer prev...Phenolic compounds present in medicinal and edible plants such as flavonoids, chalcones, coumarins, quinones, and phenolic acids. The antioxidant potential of phenolic compounds shows potent activities for cancer prevention and its treatment. From a green chemistry point of view, cascade (tandem) reactions are ideal techniques in organic synthesis for building complex structures. Cascade techniques are sometimes observed in coupling reactions under mild conditions with a tolerance of multifunctional groups. It will be interesting to find a cascade type reaction to synthesize polyphenolic ethers. This research project achieves a new cross-coupling method for establishing polyphenolic ethers from mixed phenols and halides in the presence of palladium catalyst in moderate to good yields.展开更多
Piezo-electric nano-positioning stages are being widely used in applications in which precision and accuracy in the order of nano, and high scanning speeds are paramount. This paper presents a Finite Element Analysis ...Piezo-electric nano-positioning stages are being widely used in applications in which precision and accuracy in the order of nano, and high scanning speeds are paramount. This paper presents a Finite Element Analysis (FEA) of the parallel piezo-flexural nano-positioning (PPNP) stages to investigate motion interference between their different axes. Cross-coupling is one of the significant contributors to undesirable runouts in the precision positioning of PPNP actuators. Using ABAQUS/CAE 2018 software, a 3D model of a PPNP stage was developed. The model consists of a central elastic body connected to a fixed frame through four flexural hinges. A cylindrical stack of multiple piezoelectric disks is placed between the moving central body and the fixed frame. Extensive simulations were carried out for three different friction coefficients in the piezoelectric disks’ contact surfaces, different frame materials, and different geometrical configurations of the stage and the hinges. As a result, it was observed that the primary root cause of the mechanical cross-coupling effect could be realized in the combination of the slip and rotation of the piezoelectric disks due to their frictional behavior with the stage moving in the tangential direction, concurrent with changes in the geometry of the stage.展开更多
The use of thallium(I) hydroxide (TlOH) as a base is known to extremely accelerate the Suzuki-Miyaura cross-coupling reaction using organoboronic acid or organoboronic acid ester as a substrate. Here, we investigated ...The use of thallium(I) hydroxide (TlOH) as a base is known to extremely accelerate the Suzuki-Miyaura cross-coupling reaction using organoboronic acid or organoboronic acid ester as a substrate. Here, we investigated the effects of TlOH by comparing with other conventional bases such as KOH, K2CO3, and CsF for Pd0-mediated rapid cross-coupling reactions between CH3I and organoborane reagents, such as phenyl-, (Z)-4-benzyloxy-2-butenyl-, and benzylboronic acid pinacol esters under the conditions CH3I/borane/Pd0/base (1:40:1:3) in THF/H2O or DMF/H2O for 5 min with an aim to fabricate a PET tracer efficiently. Consequently, however, the use of TlOH was much less efficient than the other bases for the acceleration of cross-coupling reactions. Thus, it was reconfirmed that the milder and non-toxic conditions using K2CO3 or CsF so far developed by our group were most appropriate for the rapid C-methylations.展开更多
基金financially supported by the State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment,Dalian University of Technology(Grant No.GZ23112)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2021ME146).
文摘To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.
基金Supported by the National Natural Science Foundation of China(21176038,21576044,21536002)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(21421005)the Dalian University of Technology Innovation Team(DUT2013TB07)
文摘Three types of ligands have been developed for copper-catalyzed Ullmann cross coupling reaction of bromaminic acid with amines in aqueous solution. Ligands with large steric hindrance and strong electron-donating capacity were beneficial to the reaction. UV–Vis and CV analyses demonstrated that these ligands had strong coordination with copper(I), implying the effect of ligand coordination ability on the stability and catalytic activity of catalytic system.
基金Supported by National Natural Science Foundation of China(Grant No.51307151)Zhejiang Provincial Public Welfare Technology Application Research Project of China(Grant No.2015C31078)+2 种基金Zhejiang Provincial Natural Science Foundation of China(Grant No.LY14E070008)Zhejiang Postdoctoral Science Foundation of China(Grant No.BSH1402065)Science Foundation of Zhejiang SciTech University(Grant No.13022151-Y)
文摘Synchronization errors directly deteriorate the machining accuracy of metal parts and the existed method cannot keep high synchronization precision because of external disturbances. A new double position servo synchronous driving scheme based on semi-closed-loop cross- coupling integrated feedforward control is proposed. The scheme comprises a position error cross-coupling feedfor-ward control and a load torque identification with feed- forward control. A digital integrated simulation system for the dual servo synchronous drive system is established. Using a 20 t servo broacher, performance analysis of the scheme is conducted based on this simulation system and the simulation results show that systems with traditional parallel or single control have problems when the work- table works with an unbalanced load. However, the system with proposed scheme shows good synchronous perfor- mance and positional accuracy. Broaching tests are performed and the experimental results show that the maximum dual axis synchronization error of the system is only 8μm during acceleration and deceleration processes and the error between the actual running position and the given position is almost zero. A double position servo synchronous driving scheme is presented based on crosscoupled integrated feedforward compensation control, which can improve the synchronization precision.
基金Project(51375430)supported by the National Natural Science Foundation of China
文摘A pneumatic parallel platform driven by an air cylinder and three circumambient pneumatic muscles was considered. Firstly, a mathematical model of the pneumatic servo system was developed for the MIMO nonlinear model-based controller designed. The pneumatic muscles were controlled by three proportional position valves, and the air cylinder was controlled by a proportional pressure valve. As the forward kinematics of this structure had no analytical solution, the control strategy should be designed in joint space. A cross-coupling integral adaptive robust controller(CCIARC) which combined cross-coupling control strategy and traditional adaptive robust control(ARC) theory was developed by back-stepping method to accomplish trajectory tracking control of the parallel platform. The cross-coupling part of the controller stabilized the length error in joint space as well as the synchronization error, and the adaptive robust control part attenuated the adverse effects of modelling error and disturbance. The force character of the pneumatic muscles was difficult to model precisely, so the on-line recursive least square estimation(RLSE) method was employed to modify the model compensation. The projector mapping method was used to condition the RLSE algorithm to bound the parameters estimated. An integral feedback part was added to the traditional robust function to reduce the negative influence of the slow time-varying characteristic of pneumatic muscles and enhance the ability of trajectory tracking. The stability of the controller designed was proved through Laypunov's theory. Various contrast controllers were designed to testify the newly designed components of the CCIARC. Extensive experiments were conducted to illustrate the performance of the controller.
文摘Umpolung reactions of C=X bonds(X=O,N)are valuable ways of constructing new C–C bonds,which are sometimes difficult to be constructed using traditional synthetic pathways.Classical polarity inversion of C=X bonds(X=O,N)usually requires air or moisture‐sensitive and strong reducing agents,which limit the feasibility of substrate scope.Herein we describe a photo‐induced reductive cross‐coupling reaction of aldehydes,ketones and imines with electron‐deficient arenes(aromatic nitriles)using fac‐Ir(ppy)3as a photocatalyst and diisopropylethylamine(DIPEA)as a terminal reductant under visible light irradiation.Mild conditions and high yields mean that this new polarity inversion strategy can be used with aryl‐substituted alcohols and amines.Spectroscopic studies and control experiments have demonstrated the oxidative quenching of Ir(ppy)3*by electron‐deficient arenes involved in the key step for the C–C bond formation.
文摘A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired products in moderate to excellent yields, using Cu(OAc)2 as the catalyst and Et3N as the solvent.
基金the National Natural Science Foundation of China(Project No.20072033)Specialized Research Fund for the Doctoral Program of Higher Education of China.
文摘Enamines, promoted by the samarium/samarium diiodide mixed reagent, were synthesized via the cross-coupling of thioamides and diarylketones in good yields.
文摘The present paper deals with the polymerization of ( R ) 3,3′ diiodo 2,2′ binaphtho 20 crown 6 with \{ p divinylbenzene\} under Heck coupling reaction condition. Both the monomers and the polymer were analyzed by NMR, FTIR, UV, CD, fluorescent spectroscopy, polarimetry, GPC and elemental analysis. The polymer can emit a strong blue fluorescence and is expected to have the potential application in the polarized blue light emitting sensors. The chiral conjugated polymer exhibits a strong Cotton effect in its Circular Dichroism(CD ) spectrum, indicating the high rigidity of the polymer backbone.
基金the financial support from the Institute for Quantum Chemical Exploration(IQCE)
文摘Highly dispersed palladium nanoparticles were synthesized in the presence of immobilized ionic liquid on mesoporous silica SBA-15.PdNPs(2.4 nm)_me-Im@SBA-15 catalyst was prepared by the reduction using NaBH_4 as the reducing agent with controlled feed rate and has been investigated as ligand-free catalyst for Suzuki–Miyaura cross-coupling reaction at room temperature in aqueous solution under air.PdNPs catalyst was also prepared in situ from PdCl4_me-Im@SBA-15 during the reaction and demonstrated high activity and stability towards nitrobenzene hydrogenation at high temperature. Both catalysts were reusable at least for four recycle processes without significant loss in activity with simple procedure. The catalysts were characterized by TEM, EXAFS, FTIR and XPS.
基金Project supported by the Natural Science Foundation of the Anhui Education Bureau of Chinathe National Natural Science Foundation of China (Grant No 10676025)
文摘This paper reports that an exact quantum close coupling calculation is carried out for rotational excitation in Ne HF collisions on the available anisotropic potential. Partial cross sections are obtained separately at the incident energies of 48.35, 75, 120 and 150meV. The reliability of the results is demonstrated by comparison with previously published theoretical findings. Based on the calculations, the effect of the potential energy surface on the excitation partial cross sections is discussed in detail.
文摘The enhancement of interface bonding between cement and polymerand the structural reticula- tion of the water-soluble polymer areproposed to minimize the shortening of the mechanical properties ofmacro-de- fect-free(MDF)cement based composites at high relativehumidity. The MDF composites incorporated with vari- ouscross-coupling agents studied experimentally. The results show thatthe MDF composites modified with small amounts of cross-couplingagent had raised mechanical properties, but it is more important thatthe modified MDF composites had a significant increase in waterresistance compared to the original one.
文摘A mild, cascade type methodology was developed for the synthesis of polyphenolic ethers by the palladium-catalyzed cross coupling of phenols and halo compounds under microwave heating. In most cases, reactions run in neat conditions and in some cases, IPA/water mixture, and 1,4-dioxane were employed as solvents to furnish the products. By applying this new method, we were able to synthesize and purify a good number of polyether compounds with complete spectral data.
文摘The possibility to carry out Cu-catalyzed cross-couplings under ligandless conditions was studied. It was found that by using K3PO4 as the base, the cross-coupling could proceed successfully between aryl iodides and several types of nucleophiles. Aryl bromides were completely inactive under the same reaction conditions.
文摘Z)-á-Bromovinylstannanes undergo the cross-coupling reaction with alkynyl iodides in the presence of Pd(PPh3)4 and CuI in THF at room temperature to afford stereoselectively (E)-1, 3- enynyl bromides in good yields.
文摘This paper aims to introduce a quadrature VCO (voltage control oscillator) which applies superharmonic coupling. The presented quadrature VCO is suitable to be used, both with 2 × subharmonic mixers, as well as 4×subharmonic mixers. It would be impossible to avoid the presence of harmonics in CMOS VCO circuits. These harmonics are in general, undesirable signals which tend to accompany the desired fundamental signal. There are common-mode nodes (similar to those in the two source nodes in a cross-coupled VCO) in deferential VCO at which higher-order harmonics are present while the fundamental is absent in essence. We can make use of these second-order harmonics which are present at the common-mode nodes of two VCO in order to implement a quadrature connection between the fundamental outputs. The technique through which this is done is called superharmonic coupling. This CMOS quadrature VCO which applies active superharmonic coupling puts an excellent performance in show, with an output power –0.942 dBm for fundamental and –9.751 dBm for subharmonic, phase noise –107.2 dBc/Hz for fundamental and –114.8 dBc/Hz at a 1MHz offset. All of circuit applied are designed and simulated by ADS, 2008.
文摘By the two-scale homogenization approach we justify a two-scale model of ion transport through a layered membrane, with flows being driven by a pressure gradient and an external electrical field. By up-scaling, the electroosmotic flow equations in horizontal thin slits separated by thin solid layers are approximated by a homogenized system of macroscale equations in the form of the Poisson equation for induced vertical electrical field and Onsager's reciprocity relations between global fluxes (hydrodynamic and electric) and forces (horizontal pressure gradient and external electrical field). In addition, the two-scale approach provides macroscopic mobility coefficients in the Onsager relations. On this way, the cross-coupling kinetic coefficient is obtained in a form which does involves the ζ -potential among the data provided the surface current is negligible.
文摘Phenolic compounds present in medicinal and edible plants such as flavonoids, chalcones, coumarins, quinones, and phenolic acids. The antioxidant potential of phenolic compounds shows potent activities for cancer prevention and its treatment. From a green chemistry point of view, cascade (tandem) reactions are ideal techniques in organic synthesis for building complex structures. Cascade techniques are sometimes observed in coupling reactions under mild conditions with a tolerance of multifunctional groups. It will be interesting to find a cascade type reaction to synthesize polyphenolic ethers. This research project achieves a new cross-coupling method for establishing polyphenolic ethers from mixed phenols and halides in the presence of palladium catalyst in moderate to good yields.
文摘Piezo-electric nano-positioning stages are being widely used in applications in which precision and accuracy in the order of nano, and high scanning speeds are paramount. This paper presents a Finite Element Analysis (FEA) of the parallel piezo-flexural nano-positioning (PPNP) stages to investigate motion interference between their different axes. Cross-coupling is one of the significant contributors to undesirable runouts in the precision positioning of PPNP actuators. Using ABAQUS/CAE 2018 software, a 3D model of a PPNP stage was developed. The model consists of a central elastic body connected to a fixed frame through four flexural hinges. A cylindrical stack of multiple piezoelectric disks is placed between the moving central body and the fixed frame. Extensive simulations were carried out for three different friction coefficients in the piezoelectric disks’ contact surfaces, different frame materials, and different geometrical configurations of the stage and the hinges. As a result, it was observed that the primary root cause of the mechanical cross-coupling effect could be realized in the combination of the slip and rotation of the piezoelectric disks due to their frictional behavior with the stage moving in the tangential direction, concurrent with changes in the geometry of the stage.
文摘The use of thallium(I) hydroxide (TlOH) as a base is known to extremely accelerate the Suzuki-Miyaura cross-coupling reaction using organoboronic acid or organoboronic acid ester as a substrate. Here, we investigated the effects of TlOH by comparing with other conventional bases such as KOH, K2CO3, and CsF for Pd0-mediated rapid cross-coupling reactions between CH3I and organoborane reagents, such as phenyl-, (Z)-4-benzyloxy-2-butenyl-, and benzylboronic acid pinacol esters under the conditions CH3I/borane/Pd0/base (1:40:1:3) in THF/H2O or DMF/H2O for 5 min with an aim to fabricate a PET tracer efficiently. Consequently, however, the use of TlOH was much less efficient than the other bases for the acceleration of cross-coupling reactions. Thus, it was reconfirmed that the milder and non-toxic conditions using K2CO3 or CsF so far developed by our group were most appropriate for the rapid C-methylations.