期刊文献+
共找到1,570篇文章
< 1 2 79 >
每页显示 20 50 100
基于Cross-Validation的小波自适应去噪方法 被引量:4
1
作者 黄文清 戴瑜兴 李加升 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第11期40-43,共4页
小波去噪算法中,阈值的选择非常关键.提出一种自适应阈值选择算法.该算法先通过Cross-Validation方法将噪声干扰信号分成两个子信号,一个用于阈值处理,一个用作参考信号;再采用最深梯度法来寻求一个最优去噪阈值.仿真和实验结果表明:在... 小波去噪算法中,阈值的选择非常关键.提出一种自适应阈值选择算法.该算法先通过Cross-Validation方法将噪声干扰信号分成两个子信号,一个用于阈值处理,一个用作参考信号;再采用最深梯度法来寻求一个最优去噪阈值.仿真和实验结果表明:在均方误差意义上,所提算法去噪效果优于Donoho等提出的VisuShrink和SureShrink两种去噪算法,且不需要带噪信号的任何'先验信息',适应于实际信号去噪处理. 展开更多
关键词 小波变换 cross-validation 自适应滤波 阈值
下载PDF
基于gBLUP方法及Cross-validation大豆表型精准预测研究 被引量:1
2
作者 唐友 郑萍 张继成 《青岛大学学报(自然科学版)》 CAS 2017年第1期56-59,共4页
为了实现提高产量和抵抗病害等能力的目的,需要提高育种水平,通过设计交差验证(Cross-Validation)实验进行大豆基因型和表型数据的分组处理,根据数据的个体和mark的数量进行合理分配,采用gBLUP(genomic Best Linear Unbiased Prediction... 为了实现提高产量和抵抗病害等能力的目的,需要提高育种水平,通过设计交差验证(Cross-Validation)实验进行大豆基因型和表型数据的分组处理,根据数据的个体和mark的数量进行合理分配,采用gBLUP(genomic Best Linear Unbiased Prediction)方法进行表型预测。根据对大豆数据多个性状通过不同分组的对比来得到精确值的范围,为后续的育种分析提供依据。对于只有大豆基因型数据而没有表型数据的情况,需要模拟表型,根据设定遗传力和模拟位点的个数(NQTN)进行模拟,然后再进行不同分组获取精准值,这样扩大了大豆数据的预测灵活性。 展开更多
关键词 交叉验证 表型预测 gBLUP 遗传力
下载PDF
基于Cross-Validation的电机故障诊断振动数据处理方法 被引量:6
3
作者 王惠中 乔林翰 +1 位作者 贺珂珂 段洁 《自动化仪表》 CAS 2018年第4期22-25,共4页
针对牵引电机故障诊断研究中所采用的神经网络方法,提出在模型训练阶段引入K折交叉验证。该方法在划分训练集与测试集期间,使验证集能够遍历所有数据集,从多方向开始学习,从而在一定程度上避免了局部极小的问题。训练完成后,以神经网络... 针对牵引电机故障诊断研究中所采用的神经网络方法,提出在模型训练阶段引入K折交叉验证。该方法在划分训练集与测试集期间,使验证集能够遍历所有数据集,从多方向开始学习,从而在一定程度上避免了局部极小的问题。训练完成后,以神经网络作为分类器进行故障识别。神经网络学习算法采用随机梯度下降的方法,每次投入一组数据集进行训练,大大提高了训练速度。Eclipse+Anaconda仿真结果证明:与传统神经网络电机故障诊断方法相比,该方法可以在一定程度上避免过拟合现象,同时避免局部极小。此外,在Matlab环境下,单独比较支持向量机采用交叉验证前后的故障分类效果。对比结果表明:交叉验证方法从多方向开始学习,对于提升故障诊断的准确率有较好作用。 展开更多
关键词 电机故障诊断 K折交叉验证 随机梯度下降 神经网络 拟合 支持向量机
下载PDF
非参数回归的L_1-Cross-Validation最近邻中位数估计的强相合性
4
作者 郑忠国 杨瑛 《甘肃科学学报》 1993年第3期14-19,共6页
考虑非参数回归模型Y<sub>i</sub>=g(x<sub>i</sub>)+e<sub>i</sub>,i≥1,其中g(x)是待估计的连续函数,{x<sub>i</sub>,i≥1}是非随机的,{e<sub>i</sub>,i≥1}是iid... 考虑非参数回归模型Y<sub>i</sub>=g(x<sub>i</sub>)+e<sub>i</sub>,i≥1,其中g(x)是待估计的连续函数,{x<sub>i</sub>,i≥1}是非随机的,{e<sub>i</sub>,i≥1}是iid随机误差,在本文中,我们讨论最近邻中位数估计(x)=m(Y<sub>(i(1)),…,Y<sub>i(h<sup>*</sup>)</sub></sub>=Yi(1),…,Y<sub>i(h<sup>*</sup>)</sub>之中位数,其中h<sup>*</sup>利用L<sub>1</sub>—Cross—Validation方法选择,在一定条件下,建立了L<sub>1</sub>—Cross—Validation最近邻中位数估计的强相合性。 展开更多
关键词 L1crossvalidation 非参数回归 最近邻中位数估计
下载PDF
非参数回归的L_1-cross-validation最近邻估计的强相合性
5
作者 杨瑛 《甘肃农业大学学报》 CAS CSCD 1993年第2期150-154,共5页
考虑非参数回归模型:Y_i=g(x_i)+e_i,i≥1,其中g是待估计的连续函数,{x_i,i≥1}是非随机的,{e_i,i≥1)是iid随机误差。在本文中,我们讨论最近邻估计g_(n,h)(x)=1/h∑Y_(R_(i,x)^(n)),其中h利用L_1-cross-validation方法选择,在一定条件... 考虑非参数回归模型:Y_i=g(x_i)+e_i,i≥1,其中g是待估计的连续函数,{x_i,i≥1}是非随机的,{e_i,i≥1)是iid随机误差。在本文中,我们讨论最近邻估计g_(n,h)(x)=1/h∑Y_(R_(i,x)^(n)),其中h利用L_1-cross-validation方法选择,在一定条件下,证明了L_1-cross-validation最近邻估计的强相合性。 展开更多
关键词 最近邻估计 强相合性 非参数回归
下载PDF
Revisiting Akaike’s Final Prediction Error and the Generalized Cross Validation Criteria in Regression from the Same Perspective: From Least Squares to Ridge Regression and Smoothing Splines
6
作者 Jean Raphael Ndzinga Mvondo Eugène-Patrice Ndong Nguéma 《Open Journal of Statistics》 2023年第5期694-716,共23页
In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived ... In regression, despite being both aimed at estimating the Mean Squared Prediction Error (MSPE), Akaike’s Final Prediction Error (FPE) and the Generalized Cross Validation (GCV) selection criteria are usually derived from two quite different perspectives. Here, settling on the most commonly accepted definition of the MSPE as the expectation of the squared prediction error loss, we provide theoretical expressions for it, valid for any linear model (LM) fitter, be it under random or non random designs. Specializing these MSPE expressions for each of them, we are able to derive closed formulas of the MSPE for some of the most popular LM fitters: Ordinary Least Squares (OLS), with or without a full column rank design matrix;Ordinary and Generalized Ridge regression, the latter embedding smoothing splines fitting. For each of these LM fitters, we then deduce a computable estimate of the MSPE which turns out to coincide with Akaike’s FPE. Using a slight variation, we similarly get a class of MSPE estimates coinciding with the classical GCV formula for those same LM fitters. 展开更多
关键词 Linear Model Mean Squared Prediction Error Final Prediction Error Generalized cross validation Least Squares Ridge Regression
下载PDF
Efficient strategies for leave-one-out cross validation for genomic best linear unbiased prediction 被引量:3
7
作者 Hao Cheng Dorian J.Garrick Rohan L.Fernando 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第3期733-737,共5页
Background: A random multiple-regression model that simultaneously fit all allele substitution effects for additive markers or haplotypes as uncorrelated random effects was proposed for Best Linear Unbiased Predictio... Background: A random multiple-regression model that simultaneously fit all allele substitution effects for additive markers or haplotypes as uncorrelated random effects was proposed for Best Linear Unbiased Prediction, using whole-genome data. Leave-one-out cross validation can be used to quantify the predictive ability of a statistical model.Methods: Naive application of Leave-one-out cross validation is computationally intensive because the training and validation analyses need to be repeated n times, once for each observation. Efficient Leave-one-out cross validation strategies are presented here, requiring little more effort than a single analysis.Results: Efficient Leave-one-out cross validation strategies is 786 times faster than the naive application for a simulated dataset with 1,000 observations and 10,000 markers and 99 times faster with 1,000 observations and 100 markers. These efficiencies relative to the naive approach using the same model will increase with increases in the number of observations.Conclusions: Efficient Leave-one-out cross validation strategies are presented here, requiring little more effort than a single analysis. 展开更多
关键词 Leave-one-out cross validation GBLUP
下载PDF
Cross-Validation, Shrinkage and Variable Selection in Linear Regression Revisited 被引量:3
8
作者 Hans C. van Houwelingen Willi Sauerbrei 《Open Journal of Statistics》 2013年第2期79-102,共24页
In deriving a regression model analysts often have to use variable selection, despite of problems introduced by data- dependent model building. Resampling approaches are proposed to handle some of the critical issues.... In deriving a regression model analysts often have to use variable selection, despite of problems introduced by data- dependent model building. Resampling approaches are proposed to handle some of the critical issues. In order to assess and compare several strategies, we will conduct a simulation study with 15 predictors and a complex correlation structure in the linear regression model. Using sample sizes of 100 and 400 and estimates of the residual variance corresponding to R2 of 0.50 and 0.71, we consider 4 scenarios with varying amount of information. We also consider two examples with 24 and 13 predictors, respectively. We will discuss the value of cross-validation, shrinkage and backward elimination (BE) with varying significance level. We will assess whether 2-step approaches using global or parameterwise shrinkage (PWSF) can improve selected models and will compare results to models derived with the LASSO procedure. Beside of MSE we will use model sparsity and further criteria for model assessment. The amount of information in the data has an influence on the selected models and the comparison of the procedures. None of the approaches was best in all scenarios. The performance of backward elimination with a suitably chosen significance level was not worse compared to the LASSO and BE models selected were much sparser, an important advantage for interpretation and transportability. Compared to global shrinkage, PWSF had better performance. Provided that the amount of information is not too small, we conclude that BE followed by PWSF is a suitable approach when variable selection is a key part of data analysis. 展开更多
关键词 cross-validation LASSO SHRINKAGE SIMULATION STUDY VARIABLE SELECTION
下载PDF
一种基于Cross-Validation的盲图像恢复方法 被引量:1
9
作者 康云 《测绘学院学报》 北大核心 2004年第4期259-261,265,共4页
图像盲复原所面临的主要问题是可利用的信息不足,目前已有的图像盲复原算法一般都是有先验知识,如非负和有限支持域的限制。但在实际中目标的支持域是未知的。文中介绍了CV(cross validation)的基本原理,给出了一种基于CV原理的支持域... 图像盲复原所面临的主要问题是可利用的信息不足,目前已有的图像盲复原算法一般都是有先验知识,如非负和有限支持域的限制。但在实际中目标的支持域是未知的。文中介绍了CV(cross validation)的基本原理,给出了一种基于CV原理的支持域确定方法的详细步骤;并针对计算大的问题提出了一定的改进。最后给出了实验结果,证明CV确定支持域的方法对于图像盲复原是有一定价值的。 展开更多
关键词 图像盲复原 点扩散函数 CV(交叉确定)
下载PDF
ON THE CONSISTENCY OF CROSS-VALIDATIONIN NONLINEAR WAVELET REGRESSION ESTIMATION
10
作者 张双林 郑忠国 《Acta Mathematica Scientia》 SCIE CSCD 2000年第1期1-11,共11页
For the nonparametric regression model Y-ni = g(x(ni)) + epsilon(ni)i = 1, ..., n, with regularly spaced nonrandom design, the authors study the behavior of the nonlinear wavelet estimator of g(x). When the threshold ... For the nonparametric regression model Y-ni = g(x(ni)) + epsilon(ni)i = 1, ..., n, with regularly spaced nonrandom design, the authors study the behavior of the nonlinear wavelet estimator of g(x). When the threshold and truncation parameters are chosen by cross-validation on the everage squared error, strong consistency for the case of dyadic sample size and moment consistency for arbitrary sample size are established under some regular conditions. 展开更多
关键词 CONSISTENCY cross-validation nonparametric regression THRESHOLD TRUNCATION wavelet estimator
下载PDF
Asher-McDade鼻唇评价量表的汉化及信效度初步研究
11
作者 陈丽先 曾妮 +1 位作者 石冰 黄汉尧 《华西口腔医学杂志》 CAS CSCD 北大核心 2024年第1期97-103,共7页
目的检测Asher-McDade鼻唇评价量表汉化后的信效度,明确其在中国唇裂术后效果评价的可行性。方法通过翻译、回译、调试及预调查形成中文版Asher-McDade鼻唇评价量表,选取四川大学华西口腔医院收治的80例唇腭裂患者的术后照片,并由唇腭... 目的检测Asher-McDade鼻唇评价量表汉化后的信效度,明确其在中国唇裂术后效果评价的可行性。方法通过翻译、回译、调试及预调查形成中文版Asher-McDade鼻唇评价量表,选取四川大学华西口腔医院收治的80例唇腭裂患者的术后照片,并由唇腭裂外科的手术医生、护理人员、研究生共10名等进行问卷调查,检验量表的信度和效度。结果量表克隆巴赫系数为0.804,量表的重测信度为0.895。量表的内容效度指数(ICVI)为1.000,量表平均内容效度指数(S-CVI/ave)为0.95。量表Kaiser-Meyer-Olkin(KMO)值为0.706,巴特利球体检验显示χ^(2)值为962.260(P<0.01),累积方差贡献率为63.095%。结论中文版Asher-McDade鼻唇评价量表具有良好的信度和效度,且适用于中国唇裂患者术后照片的效果评价。 展开更多
关键词 唇裂 鼻唇外观 跨文化调适 信度 效度
下载PDF
基于DCNN的ZPW-2000A无绝缘轨道电路故障诊断研究
12
作者 林俊亭 牛鹏远 《电子测量与仪器学报》 CSCD 北大核心 2024年第6期171-180,共10页
针对ZPW-2000A无绝缘轨道电路故障发生的多样性和不确定性导致的故障诊断效率低的问题,从故障特征提取和故障分类的角度出发,提出一种基于深度卷积神经网络(DCNN)的轨道电路故障诊断方法。通过故障分析总结出12种轨道电路故障状态,并将... 针对ZPW-2000A无绝缘轨道电路故障发生的多样性和不确定性导致的故障诊断效率低的问题,从故障特征提取和故障分类的角度出发,提出一种基于深度卷积神经网络(DCNN)的轨道电路故障诊断方法。通过故障分析总结出12种轨道电路故障状态,并将不同故障状态下的轨道电路监测数据进行标准化处理,作为DCNN模型的输入。模型采用卷积-池化结构提取轨道电路的关键特征并滤除冗余特征。BP神经网络作为模型的全连接层,并结合Softmax函数进行故障分类。通过k折交叉验证法优化模型结构,确定最佳模型。实验结果表明,采用4层卷积-池化层结构的轨道电路故障诊断模型在诊断准确率方面达到了98.48%,较同为最优模型的长短期记忆网络(LSTM)模型、深度前馈网络(DFN)模型、双向长短时记忆网络模型(BiLSTM)与CNN-LSTM组合模型分别提升了6.06%,6.06%,3.33%与2.27%,训练收敛速度分别快了大约1250、4250、1250与1450次,且训练时的损失波动更小。本研究提升了轨道电路故障诊断效率,为轨道电路的故障诊断任务提供了一种新的有效方法。 展开更多
关键词 无绝缘轨道电路 深度卷积神经网络 BP神经网络 k折交叉验证 故障诊断
下载PDF
基于BWO-RF模型的岩体质量评价方法
13
作者 赵国彦 胡凯译 +2 位作者 李洋 刘雷磊 王猛 《黄金科学技术》 CSCD 北大核心 2024年第2期270-279,共10页
岩体质量分级是地下工程初期设计和施工的基础。为了更加高效准确地开展岩体质量评价,提出了一种基于白鲸优化(BWO)随机森林的岩体质量评价模型——BWO-RF模型,同时构建了麻雀搜索算法优化随机森林(SSA-RF)、粒子群优化随机森林(PSO-RF... 岩体质量分级是地下工程初期设计和施工的基础。为了更加高效准确地开展岩体质量评价,提出了一种基于白鲸优化(BWO)随机森林的岩体质量评价模型——BWO-RF模型,同时构建了麻雀搜索算法优化随机森林(SSA-RF)、粒子群优化随机森林(PSO-RF)和未优化随机森林(RF)的岩体质量评价模型进行对比。在模型构建前,建立了包含131组工程实例数据的数据库,运用该数据库最终完成了4种模型的训练和测试。基于模型测试结果,采用准确率、查准率、召回率、F1值和AUC值5个评价指标对模型进行对比优选。研究结果表明:BWO-RF模型各项评价指标均优于其余3种模型,具有更优的评价性能;经过工程实例验证,本研究所提出的BWO-RF模型预测准确率达90%,可为实际工程建设提供参考依据,具备实际工程应用价值。 展开更多
关键词 安全工程 岩体质量评价 岩体质量分级 白鲸优化 随机森林 交叉验证
下载PDF
基于时频域融合和ECA-1DCNN的航空串联故障电弧检测
14
作者 闫锋 苏忠允 《科学技术与工程》 北大核心 2024年第5期1937-1945,共9页
为了快速准确地检测航空交流线路中出现的串联故障电弧,提出了一种基于时频域融合和加入高效注意力机制(efficient channel attention, ECA)的一维卷积神经网络(one-dimensional convolutional neural network, 1DCNN)的故障检测算法。... 为了快速准确地检测航空交流线路中出现的串联故障电弧,提出了一种基于时频域融合和加入高效注意力机制(efficient channel attention, ECA)的一维卷积神经网络(one-dimensional convolutional neural network, 1DCNN)的故障检测算法。首先,搭建航空交流电弧故障实验平台,负载选择多类型、多参数值进行电流信号的采集;其次,为了保留更多的故障信息,分析其特征频段,经过大量数据验证,航空串联电弧在发生时,1 000~4 000 Hz分量具有一定的占比,因此将原始信号与特征频段进行融合,融合后的一维数据作为模型输入;最后,搭建ECA-1DCNN检测模型,进行训练,并通过K折交叉验证模型的有效性,得到测试集平均准确率为97.96%。该方法网络层数较少,计算快速,避免了复杂时频域计算过程,较为智能,对航空串联电弧检测装置的研究提供了理论参考。 展开更多
关键词 串联电弧 高效注意力机制 特征频段 一维卷积神经网络 K折交叉验证
下载PDF
Fast cross validation for regularized extreme learning machine 被引量:9
15
作者 Yongping Zhao Kangkang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期895-900,共6页
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo... A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated. 展开更多
关键词 extreme learning machine (ELM) regularization theory cross validation neural networks.
下载PDF
基于BPNN-SHAP模型的滑坡危险性评价:以伊犁河流域为例
16
作者 戴勇 孟庆凯 +2 位作者 陈世泷 李威 杨立强 《沉积与特提斯地质》 CAS CSCD 北大核心 2024年第3期534-546,共13页
为进一步提高滑坡危险性预测模型精度、增强模型可解释性,本文以新疆伊犁河流域为研究区,选取8个影响滑坡发生的危险性因子,在反向传播神经网络(BPNN)基础上,借鉴博弈论思想,构建一种可解释BP神经网络模型(BPNNSHAP),解决神经网络滑坡... 为进一步提高滑坡危险性预测模型精度、增强模型可解释性,本文以新疆伊犁河流域为研究区,选取8个影响滑坡发生的危险性因子,在反向传播神经网络(BPNN)基础上,借鉴博弈论思想,构建一种可解释BP神经网络模型(BPNNSHAP),解决神经网络滑坡危险性评价的“黑箱”问题。将数据集分为70%训练集和30%测试集,采用5折交叉验证提高模型稳定性,对比深度神经网络(DNN)、随机森林(RF)和逻辑回归(LR)3个模型的评价精度,并探讨BPNNSHAP预测结果的可解释性,完成区域滑坡危险性评价。研究结果表明:相较于其他模型,BPNN-SHAP模型的5个精度评价指标均为最高,分别是:准确率(A)=0.904、精准度(P)=0.911、召回率(R)=0.919、F1分数(F1_(Score))=0.915、曲线下面积(SAUC)=0.901;研究区滑坡极高、高危险区分别占比11.96%、15.53%,其中新源县和巩留县极高、高危险区占比最高,分别为51.1%、45.6%;滑坡主控因子为高程、坡度、降雨量和峰值地面加速度(PGA),定量揭示高程在1500~2000 m、坡度大于14°、年降雨量在260~310 mm、PGA大于0.23 g的区域对滑坡发生起促进作用,表明该区域滑坡可能为高程和坡度主控的降雨型、地震型滑坡。本研究方法可为滑坡危险性评价提供新的技术参考,为伊犁河流域防灾减灾韧性建设提供理论支撑。 展开更多
关键词 滑坡危险性评价 BP神经网络 5折交叉验证 可解释性 伊犁河流域
下载PDF
HPLC Method Development and Validation of S(-)-Carvedilol from API and Formulations 被引量:2
17
作者 Ettireddy Swetha Chandupatla Vijitha Ciddi Veeresham 《American Journal of Analytical Chemistry》 2015年第5期437-445,共9页
A simple chiral HPLC method was developed and validated for quantification of S(-)-Carvedilol in Active Pharmaceutical Ingredient (API) and marketed tablet formulation of racemic Carvedilol. Chiral resolution of enant... A simple chiral HPLC method was developed and validated for quantification of S(-)-Carvedilol in Active Pharmaceutical Ingredient (API) and marketed tablet formulation of racemic Carvedilol. Chiral resolution of enantiomers of Carvedilol was achieved on Phenomenex Lux-cellulose–4 (250 mm × 4.6 mm;5 μ particle size) chiral column by using a mobile phase, Isopropanol and n-Heptane (60:40 v/v), at a flow rate of 1.0 ml/min and by employing UV detection at 254 nm wavelength. The method was validated according to the ICH guidelines and was proved to be specific, linear, precise and accurate for the analysis of S(-)-Carvedilol. 展开更多
关键词 S(-)-Carvedilol CHIRAL HPLC CHIRAL RESOLUTION API validation
下载PDF
Handwriting Classification Based on Support Vector Machine with Cross Validation 被引量:4
18
作者 Anith Adibah Hasseim Rubita Sudirman Puspa Inayat Khalid 《Engineering(科研)》 2013年第5期84-87,共4页
Support vector machine (SVM) has been successfully applied for classification in this paper. This paper discussed the basic principle of the SVM at first, and then SVM classifier with polynomial kernel and the Gaussia... Support vector machine (SVM) has been successfully applied for classification in this paper. This paper discussed the basic principle of the SVM at first, and then SVM classifier with polynomial kernel and the Gaussian radial basis function kernel are choosen to determine pupils who have difficulties in writing. The 10-fold cross-validation method for training and validating is introduced. The aim of this paper is to compare the performance of support vector machine with RBF and polynomial kernel used for classifying pupils with or without handwriting difficulties. Experimental results showed that the performance of SVM with RBF kernel is better than the one with polynomial kernel. 展开更多
关键词 SUPPORT VECTOR MACHINE HANDWRITING DIFFICULTIES cross-validation
下载PDF
Validation method for simulation models with cross iteration
19
作者 FANG Ke ZHAO Kaibin ZHOU Yuchen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期555-563,共9页
Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In ord... Cross iteration often exists in the computational process of the simulation models, especially for control models. There is a credibility defect tracing problem in the validation of models with cross iteration. In order to resolve this problem, after the problem formulation, a validation theorem on the cross iteration is proposed, and the proof of the theorem is given under the cross iteration circumstance. Meanwhile, applying the proposed theorem, the credibility calculation algorithm is provided, and the solvent of the defect tracing is explained. Further, based on the validation theorem on the cross iteration, a validation method for simulation models with the cross iteration is proposed, which is illustrated by a flowchart step by step. Finally, a validation example of a sixdegree of freedom (DOF) flight vehicle model is provided, and the validation process is performed by using the validation method. The result analysis shows that the method is effective to obtain the credibility of the model and accomplish the defect tracing of the validation. 展开更多
关键词 validation METHOD simulation model cross ITERATION validation THEOREM validation EXAMPLE
下载PDF
一种分层SMOTE交叉验证法--应对数据泄露与样本不平衡
20
作者 李佳静 林少聪 郑寒秀 《闽江学院学报》 2024年第2期56-68,共13页
在处理不平衡数据时,即使训练集和测试集之间互不重叠,过采样技术仍然可能导致数据泄露。为了解决这一问题,提出了一种分层SMOTE交叉验证法(stratified SMOTE cross-validation),将训练集中各类别样本均匀地划分为K折,在每一折中,独立... 在处理不平衡数据时,即使训练集和测试集之间互不重叠,过采样技术仍然可能导致数据泄露。为了解决这一问题,提出了一种分层SMOTE交叉验证法(stratified SMOTE cross-validation),将训练集中各类别样本均匀地划分为K折,在每一折中,独立地使用SMOTE算法进行数据平衡,使得每一折内的少数类样本特征仅在该折内使用。这样做不仅确保了训练与验证数据之间的完全独立,规避了数据泄露的风险,而且分类器能够充分学习少数类样本的特征。此外,结合了集成学习和参数优化技术,以增强模型的分类和泛化能力。在UCI数据集上的实验结果显示,分层SMOTE交叉验证法在分类性能上并不逊色于现有方法,并且不同的K值导致的数据分布差异会对模型性能产生影响。该方法有效地提升了模型对不平衡数据的处理能力,为不平衡学习问题提供了一定的参考价值。 展开更多
关键词 数据不平衡 数据泄露 分层SMOTE交叉验证
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部