Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al re...Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.展开更多
Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilate...Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilateral mandibular condyle between affected and normal birds were characterized by RNA sequencing analysis in the present studies.Crossed beak was induced by short length of unilateral mandibular ramus,and a total of 110differentially expressed genes were up-or down-regulated in the affected(short)mandibular condyle side as compared to the normal side.Carbonic anhydrase 2(CA2)and Carbonic anhydrase 13(CA13)were enriched in the carbonate dehydratase activity,and high-expressed in mandibular condyle and osteoblasts(P<0.05).However,both were low-expressed in short mandibular condyle side of affected birds(P<0.05).The carbonate dehydratase inhibitor experiments confirmed that there is positive association between the calcification and carbonic anhydrase isoenzymes.Quantitative analysis with cetylpyridinium chloride showed a decrease in calcification when the cells were transfected with an anti-CA13 shRNA.Our research suggested that CA2 and CA13 are down-calcified in shortside mandibular condyle,and caused mandibular ramus to grow slowly.CA2 and CA13 have the critical role in crossed beaks by regulating calcification of mandibular condyle.展开更多
3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled an...3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled and annealed composites were systematically studied.The rolled composites exhibited a heterogeneous microstructure,consisting of deformed grains elongated along rolling direction(RD)and Y_(2)O_(3)particles bands distributed along RD.After annealing,static recrystallization(SRX)occurred and most deformed grains transformed into equiaxed grains.A non-basal texture with two strong T-texture components was obtained after UR while a non-basal elliptical/circle texture with circle multi-peaks was obtained after CR,indicating that rolling path had great influences on texture of the composites.After annealing process,R-texture component disappeared or weakened,as results,a non-basal texture with double peaks tilting from normal direction(ND)to transverse direction(TD)and a more random non-basal texture with circle multi-peaks were obtained for UR and CR composites,respectively.The yield strength of rolled composites after UR showed obvious anisotropy along RD and TD while a low anisotropic yield strength was obtained after CR.Some Y_(2)O_(3)particles broke during rolling.The fracture of the composites was attributed to the existence of Y_(2)O_(3)clusters and interfacial debonding between particles and matrix during tension,as a result,the ductility was not as superior as matrix alloy.展开更多
To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence...To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions.展开更多
The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first ti...The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.展开更多
The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))a...The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.展开更多
Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook se...Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook semantic consistency,limiting their performance.To address these issues,we present a novel approach for medical image registration called theDual-VoxelMorph,featuring a dual-channel cross-constraint network.This innovative network utilizes both intensity and segmentation images,which share identical semantic information and feature representations.Two encoder-decoder structures calculate deformation fields for intensity and segmentation images,as generated by the dual-channel cross-constraint network.This design facilitates bidirectional communication between grayscale and segmentation information,enabling the model to better learn the corresponding grayscale and segmentation details of the same anatomical structures.To ensure semantic and directional consistency,we introduce constraints and apply the cosine similarity function to enhance semantic consistency.Evaluation on four public datasets demonstrates superior performance compared to the baselinemethod,achieving Dice scores of 79.9%,64.5%,69.9%,and 63.5%for OASIS-1,OASIS-3,LPBA40,and ADNI,respectively.展开更多
According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str...According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.展开更多
The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energ...The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.展开更多
We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loadin...We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss.The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.展开更多
Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Trans...Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.展开更多
Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement o...Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement of visual function include glasses or soft contact lenses correction for initial stages,gas-permeable rigid contact lenses,scleral lenses,implantation of intrastromal corneal ring or corneal transplants for most advanced stages.In keratoconus cases showing disease progression corneal collagen crosslinking(CXL)has been proven to be an effective,minimally invasive and safe procedure.CXL consists of a photochemical reaction of corneal collagen by riboflavin stimulation with ultraviolet A radiation,resulting in stromal crosslinks formation.The aim of this review is to carry out an examination of CXL methods based on theoretical basis and mathematical models,from the original Dresden protocol to the most recent developments in the technique,reporting the changes proposed in the last 15y and examining the advantages and disadvantages of the various treatment protocols.Finally,the limits of non-standardized methods and the perspectives offered by a customization of the treatment are highlighted.展开更多
The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generati...The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments.The intensity and direction of these flows depend on the dimensionless oscillating frequency.In the region of studied frequencies,the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment.For a fixed frequency,an increase in the oscillation amplitude leads to a phase-inclusion holding effect,i.e.,the body occupies a quasi-stationary position in one of the cells of the vertical channel,while oscillating around its average position.It is also shown that the oscillating motion of a liquid column generates an averaged force acting on the body,the magnitude of which depends on the properties of the body and its position in the channel.The quasi-stationary position is determined by the relative density and size of the body,as well as the dimensionless frequency.The behavior of the body as a function of the amplitude and frequency of fluid oscillation and relative size is discussed in detail.Such findings may be used in the future to control the position of a phase inclusion and/or to strengthen mass transfer effects in a channel of variable cross section by means of fluid oscillations.展开更多
BACKGROUND Crossed renal ectopia(CRE)occurs when one kidney crosses the midline from the primary side to the contralateral side while the ureter remains on the primary side.Rectal cancer,one of the most common maligna...BACKGROUND Crossed renal ectopia(CRE)occurs when one kidney crosses the midline from the primary side to the contralateral side while the ureter remains on the primary side.Rectal cancer,one of the most common malignant tumors of the digestive tract,refers to cancer from the dentate line to the rectosigmoid junction.The concurrent presentation of CRE alongside rectal cancer is an uncommon clinical observation.CASE SUMMARY Herein,we report a 69-year-old male patient with rectal cancer who was diagnosed with CRE via computed tomography during hospitalization.Following thorough preoperative evaluations,the patient underwent Dixon surgery.CONCLUSION We performed laparoscopic radical resection of rectal cancer and adequate lymph node removal in a patient with CRE with no postoperative discomfort.展开更多
Background:Aspergillus fumigatus(Af)is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic back-ground.The aim of this study was to search for candidat...Background:Aspergillus fumigatus(Af)is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic back-ground.The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus(Af)using an RNAseq approach in CC lines and hepatic gene expression.Methods:We studied 31 male mice from 25 CC lines at 8 weeks old;the mice were infected with Af.Liver tissues were extracted from these mice 5 days post-infection,and next-generation RNA-sequencing(RNAseq)was performed.The GENE-E analysis platform was used to generate a clustered heat map matrix.Results:Significant variation in body weight changes between CC lines was ob-served.Hepatic gene expression revealed 12 top prioritized candidate genes differ-entially expressed in resistant versus susceptible mice based on body weight changes.Interestingly,three candidate genes are located within genomic intervals of the previ-ously mapped quantitative trait loci(QTL),including Gm16270 and Stox1 on chromo-some 10 and Gm11033 on chromosome 8.Conclusions:Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af.As a next step,eQTL analysis will be performed for our RNA-Seq data.Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.展开更多
Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing...Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing interest in applying this technology to diverse applications in medical image analysis.Automated three dimensional Breast Ultrasound is a vital tool for detecting breast cancer,and computer-assisted diagnosis software,developed based on deep learning,can effectively assist radiologists in diagnosis.However,the network model is prone to overfitting during training,owing to challenges such as insufficient training data.This study attempts to solve the problem caused by small datasets and improve model detection performance.Methods We propose a breast cancer detection framework based on deep learning(a transfer learning method based on cross-organ cancer detection)and a contrastive learning method based on breast imaging reporting and data systems(BI-RADS).Results When using cross organ transfer learning and BIRADS based contrastive learning,the average sensitivity of the model increased by a maximum of 16.05%.Conclusion Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced,and contrastive learning method based on BI-RADS can improve the detection performance of the model.展开更多
In view of the short blooming period of pear tree crossbreeding and the complexity of pollination process, a method that can improve the efficiency of crossbreeding of pear trees was provided. Meanwhile, this method c...In view of the short blooming period of pear tree crossbreeding and the complexity of pollination process, a method that can improve the efficiency of crossbreeding of pear trees was provided. Meanwhile, this method can also be applied to the study of pollen xenia effect, pollination tree selection and pure pollen collection in pear tree cultivation.展开更多
Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) wit...Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) with pH sensitive response to controlled release of drug in biomedical materials and agriculture industry. The various concentration of carbon nanofiller is used to analyze its effect on the fabricated hydrogel characteristics by using FTIR, SEM, TGA, swelling studies (water, buffer and ionic solution). Spectra of FTIR reflected both established and newly developed groups (like hydrogel). COOH group presence is clearly observed in this range in the carbon filler reinforced hydrogel. The SEM micrographs show that CPG0.003 had a collection of polysaccharide chains as thin helices, which is attributed to the increase in the size of porosity. TGA shows to increase concentration of nanofiller enhanced the thermal stability of the designed hydrogels at temperature 25˚C to 550˚C mass loss percentage decrease upto 20% and increase thermal stability. This pH response made these resultant hydrogels as fruitful competitor against the many reported controlled release application.展开更多
Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation...Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. .展开更多
This study introduces the individualism-collectivism dimension of the cultural dimension of cross-cultural communication initiated by Geert Hofstede.Different cultures must develop a way of correlating that strikes a ...This study introduces the individualism-collectivism dimension of the cultural dimension of cross-cultural communication initiated by Geert Hofstede.Different cultures must develop a way of correlating that strikes a balance between caring for themselves and showing concern for others.Individualist culture encourages uniqueness and independence while collectivist culture emphasizes conformity and mutual assistance.This article introduces how to use case analysis method to effectively carry out classroom teaching in this cultural dimension.展开更多
基金the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(NLK 2022-04)the Central Government Guidance Funds for Local Scientific and Technological Development,China(No.Guike,ZY22096024)+1 种基金the National Natural Science Foundation of China(12065003)Guangxi Key R&D Project(2023AB07029).
文摘Aluminum is the primary structural material in nuclear engineering,and its cross section induced by 14-MeV neutrons is of great significance.To address the issue of insufficient accuracy for the^(27)Al(n,2n)^(26)Al reaction cross section,the activation method and accelerator mass spectrometry(AMS)technique were used to determine the^(27)Al(n,2n)^(26)Al cross section,which could be used as a D-T plasma ion temperature monitor in fusion reactors.At the China Academy of Engineering Physics,neutron activation was performed using a K-400 neutron generator produced by the T(d,n)4He reaction.The^(26)Al∕^(27)Al isotope ratios were measured using the newly installed GYIG 1 MV AMS at the Institute of Geochemistry,Chinese Academy of Sciences.The neutron flux was monitored by measuring the activity of 92mNb produced by the 93Nb(n,2n)92mNb reaction.The measured results were compared with available data in the experimental nuclear reaction database,and the measured values showed a reasonable degree of consistency with partially available literature data.The newly acquired cross-sectional data at 12 neutron energy points through systematic measurements clarified the divergence,which has two different growth trends from the existing experimental values.The obtained results are also compared with the corresponding evaluated database,and the newly calculated excitation functions with TALYS−1.95 and EMPIRE−3.2 codes,the agreement with CENDL−3.2,TENDL-2021 and EMPIRE−3.2 results are generally acceptable.A substantial improvement in the knowledge of the^(27)Al(n,2n)^(26)Al reaction excitation function was obtained in the present work,which will lay the foundation for the diagnosis of the fusion ion temperature,testing of the nuclear physics model,evaluation of nuclear data,etc.
基金supported by the Beijing Featured Livestock and Poultry Genetic Resources Preservation Project,China(202203310002)China Agriculture Research System of MOF and MARA(CARS40)+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(ASTIPIAS04)the Central Guidance on Local Science and Technology Development Fund of Hebei Province,China(236Z6602G)。
文摘Crossed beak is a complex mode of inheritance with prevalence ranging from 0.2 to 7.4% in at least 12 chicken strains worldwide.To reveal the intrinsic factors causing crossed beaks,genes expression patterns in bilateral mandibular condyle between affected and normal birds were characterized by RNA sequencing analysis in the present studies.Crossed beak was induced by short length of unilateral mandibular ramus,and a total of 110differentially expressed genes were up-or down-regulated in the affected(short)mandibular condyle side as compared to the normal side.Carbonic anhydrase 2(CA2)and Carbonic anhydrase 13(CA13)were enriched in the carbonate dehydratase activity,and high-expressed in mandibular condyle and osteoblasts(P<0.05).However,both were low-expressed in short mandibular condyle side of affected birds(P<0.05).The carbonate dehydratase inhibitor experiments confirmed that there is positive association between the calcification and carbonic anhydrase isoenzymes.Quantitative analysis with cetylpyridinium chloride showed a decrease in calcification when the cells were transfected with an anti-CA13 shRNA.Our research suggested that CA2 and CA13 are down-calcified in shortside mandibular condyle,and caused mandibular ramus to grow slowly.CA2 and CA13 have the critical role in crossed beaks by regulating calcification of mandibular condyle.
基金financial supports from the Natural Science Foundation of Shandong Province(ZR2021ME241)the Natural Science Foundation of Liaoning Province(No.2020-MS-004)+2 种基金the National Natural Science Foundation of China(NSFC,Nos.51601193 and 51701218)State Key Program of National Natural Science of China(No.51531002)National Key Research and Development Program of China(No.2016YFB0301104).
文摘3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled and annealed composites were systematically studied.The rolled composites exhibited a heterogeneous microstructure,consisting of deformed grains elongated along rolling direction(RD)and Y_(2)O_(3)particles bands distributed along RD.After annealing,static recrystallization(SRX)occurred and most deformed grains transformed into equiaxed grains.A non-basal texture with two strong T-texture components was obtained after UR while a non-basal elliptical/circle texture with circle multi-peaks was obtained after CR,indicating that rolling path had great influences on texture of the composites.After annealing process,R-texture component disappeared or weakened,as results,a non-basal texture with double peaks tilting from normal direction(ND)to transverse direction(TD)and a more random non-basal texture with circle multi-peaks were obtained for UR and CR composites,respectively.The yield strength of rolled composites after UR showed obvious anisotropy along RD and TD while a low anisotropic yield strength was obtained after CR.Some Y_(2)O_(3)particles broke during rolling.The fracture of the composites was attributed to the existence of Y_(2)O_(3)clusters and interfacial debonding between particles and matrix during tension,as a result,the ductility was not as superior as matrix alloy.
基金supported by Open Research Fund of Hubei Key Laboratory of Blasting(Engineering HKL-BEF202006)the National Natural Science Foundation of China(52079102,52108368).
文摘To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402400)the National Natural Science Foundation of China(Grant Nos.11974358 and 11934004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)the Heavy Ion Research Facility in Lanzhou(HIRFL).
文摘The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602502)the National Natural Science Foundation of China (Grant No.12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB34000000)。
文摘The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.
基金National Natural Science Foundation of China(Grant Nos.62171130,62172197,61972093)the Natural Science Foundation of Fujian Province(Grant Nos.2020J01573,2022J01131257,2022J01607)+3 种基金Fujian University Industry University Research Joint Innovation Project(No.2022H6006)in part by the Fund of Cloud Computing and BigData for SmartAgriculture(GrantNo.117-612014063)NationalNatural Science Foundation of China(Grant No.62301160)Nature Science Foundation of Fujian Province(Grant No.2022J01607).
文摘Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook semantic consistency,limiting their performance.To address these issues,we present a novel approach for medical image registration called theDual-VoxelMorph,featuring a dual-channel cross-constraint network.This innovative network utilizes both intensity and segmentation images,which share identical semantic information and feature representations.Two encoder-decoder structures calculate deformation fields for intensity and segmentation images,as generated by the dual-channel cross-constraint network.This design facilitates bidirectional communication between grayscale and segmentation information,enabling the model to better learn the corresponding grayscale and segmentation details of the same anatomical structures.To ensure semantic and directional consistency,we introduce constraints and apply the cosine similarity function to enhance semantic consistency.Evaluation on four public datasets demonstrates superior performance compared to the baselinemethod,achieving Dice scores of 79.9%,64.5%,69.9%,and 63.5%for OASIS-1,OASIS-3,LPBA40,and ADNI,respectively.
基金supported by the Construction and Scientific Research Project of the Zhejiang Provincial Department of Housing and Urban-Rural Development(No.2021K126,Granted byM.J.,Long,URL:https://jst.zj.gov.cn/)the ScientificResearch Project of ChinaConstruction 4th Engineering Bureau(No.CSCEC4B-2022-KTA-10,Granted by Z.C.,Bai,URL:https://4 bur.cscec.com/)+2 种基金the Scientific Research Project of China Construction 4th Engineering Bureau(No.CSCEC4B-2023-KTA-10,Granted by D.J.,Geng,URL:https://4bur.cscec.com/)the Natural Science Foundation of Hubei Province(No.2022CFD055,Granted by N.,Dai,URL:https://kjt.hubei.gov.cn/)the National Key Research and Development Program of China under Grant No.2022YFC3803002.
文摘According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.
基金This work is supported by the National Natural Science Foundation of China(No.12375296)the Key Laboratory of Nuclear Data Foundation(No.JCKY2022201C153)+2 种基金the Natural Science Foundation of Hunan Province of China(Nos.2021JJ40444,2020RC3054)the Youth Innovation Promotion Association CAS(No.2023014)the National Key Research and Development Plan(No.2022YFA1603303).
文摘The neutron-induced total cross sections of natural lead have been measured in a wide energy range(0.3 eV-20 MeV)on the back-streaming white neutron beamline(Back-n)at the China Spallation Neutron Source.Neutron energy was determined by the neutron total cross-section spectrometer using the time-of-flight technique.A fast multi-cell fission chamber was used as the neutron detector,and a 10-mm-thick high-purity natural lead sample was employed for the neutron transmission measurements.The on-beam background was determined using Co,In,Ag,and Cd filters.The excitation function of ^(nat)Pb(n,tot)reaction below 20 MeV was calculated using the TALYS-1.96 nuclear-reaction modeling program.The present results were compared with previous results,the evaluated data available in the five major evaluated nuclear data libraries(i.e.,ENDF/B-VIII.0,JEFF-3.3,JENDL-5,CENDL-3.2,and BROND-3.1),and the theoretical calculation curve.Good agreement was found between the new results and those of previous experiments and with the theoretical curves in the corresponding region.This measurement obtained the neutron total cross section of natural lead with good accuracy over a wide energy range and added experimental data in the resonance energy range.This provides more reliable experimental data for nuclear engineering design and nuclear data evaluation of lead.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.92365208,11934002,and 11920101004)the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)+1 种基金the Science and Technology Major Project of Shanxi(Grant No.202101030201022)the Space Application System of China Manned Space Program。
文摘We study the dynamical evolution of cold atoms in crossed optical dipole trap theoretically and experimentally. The atomic transport process is accompanied by two competitive kinds of physical mechanics, atomic loading and atomic loss.The loading process normally is negligible in the evaporative cooling experiment on the ground, while it is significant in preparation of ultra-cold atoms in the space station. Normally, the atomic loading process is much weaker than the atomic loss process, and the atomic number in the central region of the trap decreases monotonically, as reported in previous research. However, when the atomic loading process is comparable to the atomic loss process, the atomic number in the central region of the trap will initially increase to a maximum value and then slowly decrease, and we have observed the phenomenon first. The increase of atomic number in the central region of the trap shows the presence of the loading process, and this will be significant especially under microgravity conditions. We build a theoretical model to analyze the competitive relationship, which coincides with the experimental results well. Furthermore, we have also given the predicted evolutionary behaviors under different conditions. This research provides a solid foundation for further understanding of the atomic transport process in traps. The analysis of loading process is of significant importance for preparation of ultra-cold atoms in a crossed optical dipole trap under microgravity conditions.
基金supported by the National Key R&D Program of China(2018AAA0102100)the National Natural Science Foundation of China(No.62376287)+3 种基金the International Science and Technology Innovation Joint Base of Machine Vision and Medical Image Processing in Hunan Province(2021CB1013)the Key Research and Development Program of Hunan Province(2022SK2054)the Natural Science Foundation of Hunan Province(No.2022JJ30762,2023JJ70016)the 111 Project under Grant(No.B18059).
文摘Automatic segmentation of medical images provides a reliable scientific basis for disease diagnosis and analysis.Notably,most existing methods that combine the strengths of convolutional neural networks(CNNs)and Transformers have made significant progress.However,there are some limitations in the current integration of CNN and Transformer technology in two key aspects.Firstly,most methods either overlook or fail to fully incorporate the complementary nature between local and global features.Secondly,the significance of integrating the multiscale encoder features from the dual-branch network to enhance the decoding features is often disregarded in methods that combine CNN and Transformer.To address this issue,we present a groundbreaking dual-branch cross-attention fusion network(DCFNet),which efficiently combines the power of Swin Transformer and CNN to generate complementary global and local features.We then designed the Feature Cross-Fusion(FCF)module to efficiently fuse local and global features.In the FCF,the utilization of the Channel-wise Cross-fusion Transformer(CCT)serves the purpose of aggregatingmulti-scale features,and the Feature FusionModule(FFM)is employed to effectively aggregate dual-branch prominent feature regions from the spatial perspective.Furthermore,within the decoding phase of the dual-branch network,our proposed Channel Attention Block(CAB)aims to emphasize the significance of the channel features between the up-sampled features and the features generated by the FCFmodule to enhance the details of the decoding.Experimental results demonstrate that DCFNet exhibits enhanced accuracy in segmentation performance.Compared to other state-of-the-art(SOTA)methods,our segmentation framework exhibits a superior level of competitiveness.DCFNet’s accurate segmentation of medical images can greatly assist medical professionals in making crucial diagnoses of lesion areas in advance.
文摘Keratoconus is an ectatic condition characterized by gradual corneal thinning,corneal protrusion,progressive irregular astigmatism,corneal fibrosis,and visual impairment.The therapeutic options regarding improvement of visual function include glasses or soft contact lenses correction for initial stages,gas-permeable rigid contact lenses,scleral lenses,implantation of intrastromal corneal ring or corneal transplants for most advanced stages.In keratoconus cases showing disease progression corneal collagen crosslinking(CXL)has been proven to be an effective,minimally invasive and safe procedure.CXL consists of a photochemical reaction of corneal collagen by riboflavin stimulation with ultraviolet A radiation,resulting in stromal crosslinks formation.The aim of this review is to carry out an examination of CXL methods based on theoretical basis and mathematical models,from the original Dresden protocol to the most recent developments in the technique,reporting the changes proposed in the last 15y and examining the advantages and disadvantages of the various treatment protocols.Finally,the limits of non-standardized methods and the perspectives offered by a customization of the treatment are highlighted.
文摘The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied.It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments.The intensity and direction of these flows depend on the dimensionless oscillating frequency.In the region of studied frequencies,the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment.For a fixed frequency,an increase in the oscillation amplitude leads to a phase-inclusion holding effect,i.e.,the body occupies a quasi-stationary position in one of the cells of the vertical channel,while oscillating around its average position.It is also shown that the oscillating motion of a liquid column generates an averaged force acting on the body,the magnitude of which depends on the properties of the body and its position in the channel.The quasi-stationary position is determined by the relative density and size of the body,as well as the dimensionless frequency.The behavior of the body as a function of the amplitude and frequency of fluid oscillation and relative size is discussed in detail.Such findings may be used in the future to control the position of a phase inclusion and/or to strengthen mass transfer effects in a channel of variable cross section by means of fluid oscillations.
文摘BACKGROUND Crossed renal ectopia(CRE)occurs when one kidney crosses the midline from the primary side to the contralateral side while the ureter remains on the primary side.Rectal cancer,one of the most common malignant tumors of the digestive tract,refers to cancer from the dentate line to the rectosigmoid junction.The concurrent presentation of CRE alongside rectal cancer is an uncommon clinical observation.CASE SUMMARY Herein,we report a 69-year-old male patient with rectal cancer who was diagnosed with CRE via computed tomography during hospitalization.Following thorough preoperative evaluations,the patient underwent Dixon surgery.CONCLUSION We performed laparoscopic radical resection of rectal cancer and adequate lymph node removal in a patient with CRE with no postoperative discomfort.
基金European Sequencing and Genotyping Institutes(ESGI),Grant/Award Number:075491/Z/04,085906/Z/08/Z and 090532/Z/09/ZTel-Aviv University(TAU)。
文摘Background:Aspergillus fumigatus(Af)is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic back-ground.The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus(Af)using an RNAseq approach in CC lines and hepatic gene expression.Methods:We studied 31 male mice from 25 CC lines at 8 weeks old;the mice were infected with Af.Liver tissues were extracted from these mice 5 days post-infection,and next-generation RNA-sequencing(RNAseq)was performed.The GENE-E analysis platform was used to generate a clustered heat map matrix.Results:Significant variation in body weight changes between CC lines was ob-served.Hepatic gene expression revealed 12 top prioritized candidate genes differ-entially expressed in resistant versus susceptible mice based on body weight changes.Interestingly,three candidate genes are located within genomic intervals of the previ-ously mapped quantitative trait loci(QTL),including Gm16270 and Stox1 on chromo-some 10 and Gm11033 on chromosome 8.Conclusions:Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af.As a next step,eQTL analysis will be performed for our RNA-Seq data.Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.
基金Macao Polytechnic University Grant(RP/FCSD-01/2022RP/FCA-05/2022)Science and Technology Development Fund of Macao(0105/2022/A).
文摘Background Deep convolutional neural networks have garnered considerable attention in numerous machine learning applications,particularly in visual recognition tasks such as image and video analyses.There is a growing interest in applying this technology to diverse applications in medical image analysis.Automated three dimensional Breast Ultrasound is a vital tool for detecting breast cancer,and computer-assisted diagnosis software,developed based on deep learning,can effectively assist radiologists in diagnosis.However,the network model is prone to overfitting during training,owing to challenges such as insufficient training data.This study attempts to solve the problem caused by small datasets and improve model detection performance.Methods We propose a breast cancer detection framework based on deep learning(a transfer learning method based on cross-organ cancer detection)and a contrastive learning method based on breast imaging reporting and data systems(BI-RADS).Results When using cross organ transfer learning and BIRADS based contrastive learning,the average sensitivity of the model increased by a maximum of 16.05%.Conclusion Our experiments have demonstrated that the parameters and experiences of cross-organ cancer detection can be mutually referenced,and contrastive learning method based on BI-RADS can improve the detection performance of the model.
基金Supported by HAAFS Science and Technology Innovation Special Project(2022KJCXZX-CGS-7)the Key Research and Development Program of Hebei Province(21326308D-1-2)Hebei Agriculture Research System(HBCT 2024170406)。
文摘In view of the short blooming period of pear tree crossbreeding and the complexity of pollination process, a method that can improve the efficiency of crossbreeding of pear trees was provided. Meanwhile, this method can also be applied to the study of pollen xenia effect, pollination tree selection and pure pollen collection in pear tree cultivation.
文摘Eco-friendly and biodegradable novel hydrogel were prepared by blending and solution casting method. The designed hydrogel is based on chitosan/ PEG600/Gurgam with carbon nanofiller along silane crosslinked (TEOS) with pH sensitive response to controlled release of drug in biomedical materials and agriculture industry. The various concentration of carbon nanofiller is used to analyze its effect on the fabricated hydrogel characteristics by using FTIR, SEM, TGA, swelling studies (water, buffer and ionic solution). Spectra of FTIR reflected both established and newly developed groups (like hydrogel). COOH group presence is clearly observed in this range in the carbon filler reinforced hydrogel. The SEM micrographs show that CPG0.003 had a collection of polysaccharide chains as thin helices, which is attributed to the increase in the size of porosity. TGA shows to increase concentration of nanofiller enhanced the thermal stability of the designed hydrogels at temperature 25˚C to 550˚C mass loss percentage decrease upto 20% and increase thermal stability. This pH response made these resultant hydrogels as fruitful competitor against the many reported controlled release application.
文摘Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. .
文摘This study introduces the individualism-collectivism dimension of the cultural dimension of cross-cultural communication initiated by Geert Hofstede.Different cultures must develop a way of correlating that strikes a balance between caring for themselves and showing concern for others.Individualist culture encourages uniqueness and independence while collectivist culture emphasizes conformity and mutual assistance.This article introduces how to use case analysis method to effectively carry out classroom teaching in this cultural dimension.