According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str...According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.展开更多
In order to explore the cultural value of waterfront in urban landscape,from the perspective of cross-cultural comparison psychology,the subjects from Britain,Japan and China have been surveyed to obtain their cogniti...In order to explore the cultural value of waterfront in urban landscape,from the perspective of cross-cultural comparison psychology,the subjects from Britain,Japan and China have been surveyed to obtain their cognitive structure and behavior on waterfront landscape.Based on the comparison of quantitative statistic results of life value,cognitive structure of waterfront space,and water-loving,a quantitative analysis has been conducted on the relevance between each factor by using Quantification Theory III.Then,it has analyzed the types and purpose of behavior in waterfront space,and the influence brought by cultural value difference.展开更多
Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insula...Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insulation consideration.The total response of the system is related to the dynamics of both pipes and the interactions between these two concentric pipes.In the current work,a theoretical model for flow-induced vibrations of a PIP structure system is proposed and analyzed in the presence of an internal axial flow and an external cross flow.The interactions between the two pipes are modeled by a linear distributed damper,a linear distributed spring and a nonlinear distributed spring along the pipe length.The unsteady hydrodynamic forces due to cross flow are modeled by two distributed van der Pol wake oscillators.The nonlinear partial differential equations for the two pipes and the wake are further discretized by the aid of Galerkin’s technique,resulting in a set of ordinary differential equations.These ordinary differential equations are further numeri cally solved by using a fourth-order Runge-Kutta integration algorithm.Phase portraits,bifurcation diagrams,an Argand diagram and oscillation shape diagrams are plotted,showing the existence of a lock-in phenomenon and figure-of-eight trajectory.The PIP system subjected to cross flow displays some interesting dynamical behaviors different from that of a single-pipe structure.展开更多
Cross-linked polyethylene (PEX) pipes used in hot water supply are required for high mechanical strength and high creep resistance at high temperature. Especially PEX-a pipes which are made by peroxide cross-linking h...Cross-linked polyethylene (PEX) pipes used in hot water supply are required for high mechanical strength and high creep resistance at high temperature. Especially PEX-a pipes which are made by peroxide cross-linking have better performance, such as creep resistance and thermal shock resistance than the pipes made by the other cross-linking method. Because the PEX-a pipes indicate the higher cross-link degree as compared with the other PEX pipes. In this study, the PEX-a pipes which were mixed with several stabilizers were tested to evaluate the effects on cross-link degree and the oxygen induction time. And also they are evaluated with the chlorine aqueous solution by the performance of the long-term hydrostatic pressure test and the long-term hydro dynamic pressure test. As a result, it was found that the combination of antioxidants for PEX-a pipes plays an important role to prolong the oxygen induction time without inhibiting the cross-linking. From the results of the 1H pulsed NMR measurement over the melting point of polyethylene, it was found that each peroxide PEX pipe with different antioxidant combinations indicated the different proportion and crosslink density of cross-linked region, in addition, that these pipes had the effective structure of cross-linking for the hydrostatic and hydrodynamic pressure test with the chlorine aqueous solution. Therefore, it was considered to be useful results for studies of the stricture of cross-linking of polyethylene.展开更多
This study investigates the vertical structure of variability in the cross-equatorial flows(CEFs)over the Maritime Continent and Indian Ocean in boreal summer,based on three reanalysis datasets:ERA-Interim,JRA-55 and ...This study investigates the vertical structure of variability in the cross-equatorial flows(CEFs)over the Maritime Continent and Indian Ocean in boreal summer,based on three reanalysis datasets:ERA-Interim,JRA-55 and NCEP-2.The results show a high consistency in the interannual variability among the reanalysis datasets,especially between ERAInterim and JRA-55,while great uncertainty exists in the decadal or long-term changes of CEFs.Further analyses on the interannual variability in CEFs indicate that there is a significant negative relationship between the upper-and lower-level CEFs over the Maritime Continent—that is,the northerlies at the upper level and southerlies at the lower level are both enhanced or weakened.This seesaw pattern is also significantly related to the CEFs over the Indian Ocean at the upper level and lower level(i.e.,the Somali jet).This close relationship between the upper-and lower-level CEFs and between the Maritime Continent and Indian Ocean is manifested as the leading mode of equatorial meridional winds in the vertical-zonal section over the Maritime Continent and Indian Ocean.Finally,it is found that ENSO is closely related to the vertical leading mode,and to all the CEFs at the upper and lower levels over the Maritime Continent and Indian Ocean.展开更多
An approximation method based on Regge behavior is presented. This new methodrelates the reduced cross section derivative and the structure function Regge behavior at low x.With the use of this approximation method, t...An approximation method based on Regge behavior is presented. This new methodrelates the reduced cross section derivative and the structure function Regge behavior at low x.With the use of this approximation method, the C and λ parameters are calcuiated from the HERAreduced cross section data taken at low-x. Also, we calculate the structure functions F_2(x, Q~2)even for low-x values, which have not been investigated. To test the validity of calculatedstructure functions, we find the gluon distribution function in the Leading order approximationbased on Regge behaviour of structure function and compare to the NLO QCD fit to H1 data and NLOparton distribution function.展开更多
The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing ...The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.展开更多
This paper is an effort to extract the structure function, the EMC ratio, and the lepton scattering cross section in the convolution nuclear theory framework for 4He and 12C nuclei. We suppose that, in conventional ap...This paper is an effort to extract the structure function, the EMC ratio, and the lepton scattering cross section in the convolution nuclear theory framework for 4He and 12C nuclei. We suppose that, in conventional approach, based on harmonic oscillator model, one could consider for a nucleus shell different hw?parameters which are associated with the square root of the mean radius of the nucleus shells. We use GRV free nucleon structure function, which has good agreement with the proton and neutron structure function, extracted from experimental results. In addition, the lepton scattering cross sections of 4He and 12C nuclei are calculated in energy higher than 1 GeV. The extracted results show good agreement with experimental data.展开更多
We measured the resonant Raman spectra of all-trans-β-carotene in solvents with different densities and concentrations at different temperatures. The results demonstrated that the Raman scattering cross section (RSC...We measured the resonant Raman spectra of all-trans-β-carotene in solvents with different densities and concentrations at different temperatures. The results demonstrated that the Raman scattering cross section (RSCS) of short-chain polymer all-trans-β-carotene is extremely high in liquid. Resonance and strong coherent weakly damped CC bond vibrating properties play important roles under these conditions. Coherent weakly damped CC bond vibration strength is associated with molecular ordered structure. All-trans-β-carotene has highly ordered structure and strong coherent weakly damped CC bond vibrating properties, which lead to large RSCS in the solvent with large density and low concentration at low temperature.展开更多
The microstructures of conch shell were observed with scanning electronic microscope (SEM), and a kind of inclined-cross microstructure of aragonite sheets was found. The maximal pull-out force of the inclined-cros...The microstructures of conch shell were observed with scanning electronic microscope (SEM), and a kind of inclined-cross microstructure of aragonite sheets was found. The maximal pull-out force of the inclined-cross microstructure was analyzed based on its representative model and compared with that of a conventional 0 °- structure. The experimental result indicates that the maximal pull-out force of the inclined-cross microstructure is markedly larger than that of the 0°- structure.展开更多
Aiming at different variation patterns of cross-fault short-leveling before earthquakes,the paper establishes the 2-D finite-element models with different crustal stratification and fault occurrence perpendicular to L...Aiming at different variation patterns of cross-fault short-leveling before earthquakes,the paper establishes the 2-D finite-element models with different crustal stratification and fault occurrence perpendicular to Longmenshan fault zone. By contact analysis and viscoelastic finite element method,the influence of fault structure on cross-fault short-leveling is obtained under the same constraint conditions,the results show that:with the increase of the horizontal projection distance of fault,the cumulative displacements of surface increase gradually in the models with fixed dip angles of the fault plane(model 1). However,when the horizontal projection distance exceeds 20 km,the influence of fault?s dip angle on the cumulative displacements of surface short-leveling will decrease significantly,and the cumulative displacements are maintained at about 1. 5 m. However,in the listric fault models(model 2),when the projection distance is less than 20 km,the listric fault structure impedes the sliding of fault. The short-leveling variation rate is only half of model 1;as a result,the ability to reflect the regional stress enhancement by cross-fault short-leveling is further weakened. But when the horizontal projection distance exceeds25 km,the cumulative displacements significantly increase,with the maximum displacement reaching 1. 75 m. The results of equivalent stress show that the listric fault structure causes a sudden increasement in equivalent stress when the horizontal projection distance is 10 km,higher equivalent stress values are accumulated between the projection distance of 5-20 km,and then high-low stress difference zones are formed at the bottom of the fault plane and near the transition zone of low-high dip angle.展开更多
With 3D orthogonal and pseudo-orthogonal weaves, woven sructures with lengthwise and widthwise changing cross section on one side or both sides of the structure can be constructed. The weave formation and the looming ...With 3D orthogonal and pseudo-orthogonal weaves, woven sructures with lengthwise and widthwise changing cross section on one side or both sides of the structure can be constructed. The weave formation and the looming draft creation are discussed in this paper which can be used as references to manufacture woven preforms with changing cross sections.展开更多
In this study, we examined the influences of the differences in basin scale and river-crossing structures of 8 rivers of Ise Bay in Mie and Aichi Prefectures, Japan on the vegetation in the estuarine tidal flats of th...In this study, we examined the influences of the differences in basin scale and river-crossing structures of 8 rivers of Ise Bay in Mie and Aichi Prefectures, Japan on the vegetation in the estuarine tidal flats of these rivers. The dominant plant communities of the estuarine tidal flats formed from rivers of large-scale river basins (exceeding 300 km2) were determined. In the Miya River, the dominant plant community was the Suaeda maritima and Artemisia fukudo community. In the Kushida River, the dominant plant community was composed of Phacelurus latifolius, Artemisia fukudo, Phragmites australis, and bamboo. In the Kumozu River, the dominant community was composed of the coastal plants Calystegia soldanella, Lathyrus japonicus, and Carex pumila and the exotic plant of Lolium multiflorum. The plant community of Suzuka River was dominated by the exotic plant of Eragrostis curvula. Among the estuarine tidal flats influenced by a small-scale river basin (50 km2 or less), the plant community of Shinbori River (Fukue tidal flat) was dominated by Suaeda maritima, and the plant communities of the Shio and Harai Rivers were dominated by Phragmites australis. The plant community of Tanaka River was dominated by Phragmites australis and coastal plants. Regarding the relationship between the vegetation and the river environment for each study site, we hypothesised that in a large basin area with few structures crossing the river, the river water catchment in the estuary after heavy rains caused large areas of disturbance and formed bare land, providing suitable habitat for an annual salt marsh plant community. In contrast, in cases with many structures crossing the river, a stable channel, an excavated riverbed and the suppression of runoff and the resulting disturbance of the estuary, flooding did not occur during high tide. Moreover, we hypothesised that in a small basin with many structures crossing the river, disturbance to the estuary was not likely, and the perennial salt marsh plant community of Phragmites australis would be widely distributed, except for a river type such as the Shinbori River, in which tide and river flow were managed by a final closure.展开更多
This paper is the first in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads. The primary purpose of this series is to understand the magnitude of the dynami...This paper is the first in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads. The primary purpose of this series is to understand the magnitude of the dynamic response of structures to enable better design of structures and control modification devices/systems. Under idealized design conditions, the structural responses are obtained by using single direction input ground motions in the direction of the intended control devices/systems, and by assuming that the responses of the structure is decoupleable in three mutually perpendicular directions. This standard practice has been applied to both new and retrofitted structures using various seismic protective systems. Very limited information is available on the effects of neglecting the impact of directional couplings (cross effects - of which torsion is a component) of the dynamic response of structures. In order to quantify such effects, it is necessary to examine the principal axes of structures under both static and dynamic loading. This first paper deals with quantitative definitions of principal axes and “cross effects” of three-dimensional structures under static load by using linear algebra. It shows theoretically that, for three-dimensional structures, such principal axes rarely exist. Under static loading conditions, the cross effect is typically small and negligible from the viewpoint of engineering applications. However, it provides the theoretical base for subsequent quantification of the response couplings under dynamic loads, which is reported in part II of this series.展开更多
For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inv...For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%.展开更多
This paper is the second in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads.The primary purpose of this series is to understand the magnitude of the dynami...This paper is the second in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads.The primary purpose of this series is to understand the magnitude of the dynamie response of structures to enable better design of structures and response modification devices/systems.Under idealized design condi- tions,the structural responses are obtained by using single directinn input ground motions in the direction of the intended response modification devices/systems,and by assuming that the responses of the structure is deconpleable in three mutual- ly perpendicular directions.This standard practice has been applied to both new and retrofitted structures using various seis- mic protective systems.Very limited information is available on the effects of neglecting the impact of directional couplings (cross effects of which torsion is a component)of the dynamic response of structures.In order to quantify such effects,it is necessary to examine the principal axes of structures under both static and dynamic loading.In this twn-part series,the first paper is concerned with static loading,which provides definitions and fundamental formulations,with the conclusion that cross effects of a statically loaded M-DOF structure resulting from the lack of principal axes are of insignificant magnitude. However,under dynamic or earthquake loading,a relatively small amount of energy transferred across perpendicular direc- tions is accumulated,which may result in significant enlargement of the structural response.This paper deals with a formu- lation to define the principal axes of M-DOF structures under dynamic loading and develops quantitative measures to identify cross effects resuhing from the non-existence of principal axes.展开更多
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t...The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.展开更多
A kind of novel electromagnetic structure of Cassini cross section is proposed and simulation is implemented with business microwave soft CST based on finite integral technique (FIT). The electromagnetic field mode ...A kind of novel electromagnetic structure of Cassini cross section is proposed and simulation is implemented with business microwave soft CST based on finite integral technique (FIT). The electromagnetic field mode type of Cassini wave-guide belongs to TE, and the electromagnetic field intensity is stronger near the neck region than at other areas. For Cassini electromagnetic patches and lumped elements, the radar cross section (RCS) is smaller around 7 GHz with -30.85 dBsm, and the absorbing property is better around 13 GHz with 4.56 dBsm difference of RCS from comparing of pure medium. For novel radiation structure of Cassini cross-section patches, the electromagnetic field value is larger in the neck areas of two half patches. At last, the potential application and development of Cassini oval structure are put forward in the electromagnetic stealth technology and antennae design.展开更多
The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soi...The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soil-structure dynamic interaction research considering adjacent structures was proposed as reference for researchers.The existing matter and the prospect of future research trend in this field was also examined.展开更多
Bone-like nanohydroxyapatite powders (b-nanoHA) were synthesized in simulated body fluid (SBF). The b-nanoHA, gelatin (Gel) and Polyvinyl Alcohol (PVA) were used to prepare bone-like composites (b-nanoHA/ Gel/PVA) at ...Bone-like nanohydroxyapatite powders (b-nanoHA) were synthesized in simulated body fluid (SBF). The b-nanoHA, gelatin (Gel) and Polyvinyl Alcohol (PVA) were used to prepare bone-like composites (b-nanoHA/ Gel/PVA) at room temperature. Characterizations of b-nanoHA powders and b-nanoHA/Gel/PVA composites were investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Bending strength and compressive strength of the composite were tested. It was found that microstructure of the b-nanoHA powders was whisker shape and its crystalline degree was low similar to natural bone, bending strength and compressive strength of the b-nanoHA/Gel/PVA composite depended on the mixing ratio of HA, Gel and PVA, and also PVA could induce the network formation in the b-nanoHA/Gel/ PVA composite.展开更多
基金supported by the Construction and Scientific Research Project of the Zhejiang Provincial Department of Housing and Urban-Rural Development(No.2021K126,Granted byM.J.,Long,URL:https://jst.zj.gov.cn/)the ScientificResearch Project of ChinaConstruction 4th Engineering Bureau(No.CSCEC4B-2022-KTA-10,Granted by Z.C.,Bai,URL:https://4 bur.cscec.com/)+2 种基金the Scientific Research Project of China Construction 4th Engineering Bureau(No.CSCEC4B-2023-KTA-10,Granted by D.J.,Geng,URL:https://4bur.cscec.com/)the Natural Science Foundation of Hubei Province(No.2022CFD055,Granted by N.,Dai,URL:https://kjt.hubei.gov.cn/)the National Key Research and Development Program of China under Grant No.2022YFC3803002.
文摘According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.
基金Supported by Independent Scientific Research Fund Project of Dalian Nationalities University(DC10030205)~~
文摘In order to explore the cultural value of waterfront in urban landscape,from the perspective of cross-cultural comparison psychology,the subjects from Britain,Japan and China have been surveyed to obtain their cognitive structure and behavior on waterfront landscape.Based on the comparison of quantitative statistic results of life value,cognitive structure of waterfront space,and water-loving,a quantitative analysis has been conducted on the relevance between each factor by using Quantification Theory III.Then,it has analyzed the types and purpose of behavior in waterfront space,and the influence brought by cultural value difference.
基金The work was supported by the National Natural Science Foundation of China(Grant 11622216).
文摘Pipe-in-pipe(PIP)structures are widely used in offshore oil and gas pipelines to settle thermal insulation issues.A PIP structure system usually consists of two concentric pipes and one softer layer for thermal insulation consideration.The total response of the system is related to the dynamics of both pipes and the interactions between these two concentric pipes.In the current work,a theoretical model for flow-induced vibrations of a PIP structure system is proposed and analyzed in the presence of an internal axial flow and an external cross flow.The interactions between the two pipes are modeled by a linear distributed damper,a linear distributed spring and a nonlinear distributed spring along the pipe length.The unsteady hydrodynamic forces due to cross flow are modeled by two distributed van der Pol wake oscillators.The nonlinear partial differential equations for the two pipes and the wake are further discretized by the aid of Galerkin’s technique,resulting in a set of ordinary differential equations.These ordinary differential equations are further numeri cally solved by using a fourth-order Runge-Kutta integration algorithm.Phase portraits,bifurcation diagrams,an Argand diagram and oscillation shape diagrams are plotted,showing the existence of a lock-in phenomenon and figure-of-eight trajectory.The PIP system subjected to cross flow displays some interesting dynamical behaviors different from that of a single-pipe structure.
文摘Cross-linked polyethylene (PEX) pipes used in hot water supply are required for high mechanical strength and high creep resistance at high temperature. Especially PEX-a pipes which are made by peroxide cross-linking have better performance, such as creep resistance and thermal shock resistance than the pipes made by the other cross-linking method. Because the PEX-a pipes indicate the higher cross-link degree as compared with the other PEX pipes. In this study, the PEX-a pipes which were mixed with several stabilizers were tested to evaluate the effects on cross-link degree and the oxygen induction time. And also they are evaluated with the chlorine aqueous solution by the performance of the long-term hydrostatic pressure test and the long-term hydro dynamic pressure test. As a result, it was found that the combination of antioxidants for PEX-a pipes plays an important role to prolong the oxygen induction time without inhibiting the cross-linking. From the results of the 1H pulsed NMR measurement over the melting point of polyethylene, it was found that each peroxide PEX pipe with different antioxidant combinations indicated the different proportion and crosslink density of cross-linked region, in addition, that these pipes had the effective structure of cross-linking for the hydrostatic and hydrodynamic pressure test with the chlorine aqueous solution. Therefore, it was considered to be useful results for studies of the stricture of cross-linking of polyethylene.
基金supported by the National Natural Science Foundation of China (Grant No. 41721004)
文摘This study investigates the vertical structure of variability in the cross-equatorial flows(CEFs)over the Maritime Continent and Indian Ocean in boreal summer,based on three reanalysis datasets:ERA-Interim,JRA-55 and NCEP-2.The results show a high consistency in the interannual variability among the reanalysis datasets,especially between ERAInterim and JRA-55,while great uncertainty exists in the decadal or long-term changes of CEFs.Further analyses on the interannual variability in CEFs indicate that there is a significant negative relationship between the upper-and lower-level CEFs over the Maritime Continent—that is,the northerlies at the upper level and southerlies at the lower level are both enhanced or weakened.This seesaw pattern is also significantly related to the CEFs over the Indian Ocean at the upper level and lower level(i.e.,the Somali jet).This close relationship between the upper-and lower-level CEFs and between the Maritime Continent and Indian Ocean is manifested as the leading mode of equatorial meridional winds in the vertical-zonal section over the Maritime Continent and Indian Ocean.Finally,it is found that ENSO is closely related to the vertical leading mode,and to all the CEFs at the upper and lower levels over the Maritime Continent and Indian Ocean.
文摘An approximation method based on Regge behavior is presented. This new methodrelates the reduced cross section derivative and the structure function Regge behavior at low x.With the use of this approximation method, the C and λ parameters are calcuiated from the HERAreduced cross section data taken at low-x. Also, we calculate the structure functions F_2(x, Q~2)even for low-x values, which have not been investigated. To test the validity of calculatedstructure functions, we find the gluon distribution function in the Leading order approximationbased on Regge behaviour of structure function and compare to the NLO QCD fit to H1 data and NLOparton distribution function.
基金National Natural Science Foundation of China under Grant No.52108453Natural Science Foundation of Jiangxi Province of China under Grant No.20212BAB214014+1 种基金National Key R&D Program of China under Grant No.2018YFC1504305Joint Funds of the National Natural Science Foundation of China under Grant No.U1839201。
文摘The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.
文摘This paper is an effort to extract the structure function, the EMC ratio, and the lepton scattering cross section in the convolution nuclear theory framework for 4He and 12C nuclei. We suppose that, in conventional approach, based on harmonic oscillator model, one could consider for a nucleus shell different hw?parameters which are associated with the square root of the mean radius of the nucleus shells. We use GRV free nucleon structure function, which has good agreement with the proton and neutron structure function, extracted from experimental results. In addition, the lepton scattering cross sections of 4He and 12C nuclei are calculated in energy higher than 1 GeV. The extracted results show good agreement with experimental data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10774057 and 10974067)the Graduate Innovation Fund of Jilin University,China (Grant No. 20101046)
文摘We measured the resonant Raman spectra of all-trans-β-carotene in solvents with different densities and concentrations at different temperatures. The results demonstrated that the Raman scattering cross section (RSCS) of short-chain polymer all-trans-β-carotene is extremely high in liquid. Resonance and strong coherent weakly damped CC bond vibrating properties play important roles under these conditions. Coherent weakly damped CC bond vibration strength is associated with molecular ordered structure. All-trans-β-carotene has highly ordered structure and strong coherent weakly damped CC bond vibrating properties, which lead to large RSCS in the solvent with large density and low concentration at low temperature.
文摘The microstructures of conch shell were observed with scanning electronic microscope (SEM), and a kind of inclined-cross microstructure of aragonite sheets was found. The maximal pull-out force of the inclined-cross microstructure was analyzed based on its representative model and compared with that of a conventional 0 °- structure. The experimental result indicates that the maximal pull-out force of the inclined-cross microstructure is markedly larger than that of the 0°- structure.
基金supported by the Youth Science and Technology Fund of China Earthquake Networks Center(QNJJ201801)the National Key R&D Programof China(2018YFC0807000)
文摘Aiming at different variation patterns of cross-fault short-leveling before earthquakes,the paper establishes the 2-D finite-element models with different crustal stratification and fault occurrence perpendicular to Longmenshan fault zone. By contact analysis and viscoelastic finite element method,the influence of fault structure on cross-fault short-leveling is obtained under the same constraint conditions,the results show that:with the increase of the horizontal projection distance of fault,the cumulative displacements of surface increase gradually in the models with fixed dip angles of the fault plane(model 1). However,when the horizontal projection distance exceeds 20 km,the influence of fault?s dip angle on the cumulative displacements of surface short-leveling will decrease significantly,and the cumulative displacements are maintained at about 1. 5 m. However,in the listric fault models(model 2),when the projection distance is less than 20 km,the listric fault structure impedes the sliding of fault. The short-leveling variation rate is only half of model 1;as a result,the ability to reflect the regional stress enhancement by cross-fault short-leveling is further weakened. But when the horizontal projection distance exceeds25 km,the cumulative displacements significantly increase,with the maximum displacement reaching 1. 75 m. The results of equivalent stress show that the listric fault structure causes a sudden increasement in equivalent stress when the horizontal projection distance is 10 km,higher equivalent stress values are accumulated between the projection distance of 5-20 km,and then high-low stress difference zones are formed at the bottom of the fault plane and near the transition zone of low-high dip angle.
文摘With 3D orthogonal and pseudo-orthogonal weaves, woven sructures with lengthwise and widthwise changing cross section on one side or both sides of the structure can be constructed. The weave formation and the looming draft creation are discussed in this paper which can be used as references to manufacture woven preforms with changing cross sections.
文摘In this study, we examined the influences of the differences in basin scale and river-crossing structures of 8 rivers of Ise Bay in Mie and Aichi Prefectures, Japan on the vegetation in the estuarine tidal flats of these rivers. The dominant plant communities of the estuarine tidal flats formed from rivers of large-scale river basins (exceeding 300 km2) were determined. In the Miya River, the dominant plant community was the Suaeda maritima and Artemisia fukudo community. In the Kushida River, the dominant plant community was composed of Phacelurus latifolius, Artemisia fukudo, Phragmites australis, and bamboo. In the Kumozu River, the dominant community was composed of the coastal plants Calystegia soldanella, Lathyrus japonicus, and Carex pumila and the exotic plant of Lolium multiflorum. The plant community of Suzuka River was dominated by the exotic plant of Eragrostis curvula. Among the estuarine tidal flats influenced by a small-scale river basin (50 km2 or less), the plant community of Shinbori River (Fukue tidal flat) was dominated by Suaeda maritima, and the plant communities of the Shio and Harai Rivers were dominated by Phragmites australis. The plant community of Tanaka River was dominated by Phragmites australis and coastal plants. Regarding the relationship between the vegetation and the river environment for each study site, we hypothesised that in a large basin area with few structures crossing the river, the river water catchment in the estuary after heavy rains caused large areas of disturbance and formed bare land, providing suitable habitat for an annual salt marsh plant community. In contrast, in cases with many structures crossing the river, a stable channel, an excavated riverbed and the suppression of runoff and the resulting disturbance of the estuary, flooding did not occur during high tide. Moreover, we hypothesised that in a small basin with many structures crossing the river, disturbance to the estuary was not likely, and the perennial salt marsh plant community of Phragmites australis would be widely distributed, except for a river type such as the Shinbori River, in which tide and river flow were managed by a final closure.
基金funded through a contract from the Federal Highway Administration (Contract No.ETFH61-98-C-00094)a grant from the Earthquake Education Research Centers Program of the National Science Foundation to the Multidisciplinary Center for Earthquake Engineering Research (Grant No.ECC-9701471).
文摘This paper is the first in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads. The primary purpose of this series is to understand the magnitude of the dynamic response of structures to enable better design of structures and control modification devices/systems. Under idealized design conditions, the structural responses are obtained by using single direction input ground motions in the direction of the intended control devices/systems, and by assuming that the responses of the structure is decoupleable in three mutually perpendicular directions. This standard practice has been applied to both new and retrofitted structures using various seismic protective systems. Very limited information is available on the effects of neglecting the impact of directional couplings (cross effects - of which torsion is a component) of the dynamic response of structures. In order to quantify such effects, it is necessary to examine the principal axes of structures under both static and dynamic loading. This first paper deals with quantitative definitions of principal axes and “cross effects” of three-dimensional structures under static load by using linear algebra. It shows theoretically that, for three-dimensional structures, such principal axes rarely exist. Under static loading conditions, the cross effect is typically small and negligible from the viewpoint of engineering applications. However, it provides the theoretical base for subsequent quantification of the response couplings under dynamic loads, which is reported in part II of this series.
基金funding for this study from National Key R&D Program of China(2018YFA0702800)National Natural Science Foundation of China(12072056)+1 种基金the Fundamental Research Funds for the Central Universities(DUT19LK49)Nantong Science and Technology Plan Project(No.MS22019016).
文摘For practical engineering structures,it is usually difficult to measure external load distribution in a direct manner,which makes inverse load identification important.Specifically,load identification is a typical inverse problem,for which the models(e.g.,response matrix)are often ill-posed,resulting in degraded accuracy and impaired noise immunity of load identification.This study aims at identifying external loads in a stiffened plate structure,through comparing the effectiveness of different methods for parameter selection in regulation problems,including the Generalized Cross Validation(GCV)method,the Ordinary Cross Validation method and the truncated singular value decomposition method.With demonstrated high accuracy,the GCV method is used to identify concentrated loads in three different directions(e.g.,vertical,lateral and longitudinal)exerted on a stiffened plate.The results show that the GCV method is able to effectively identify multi-source static loads,with relative errors less than 5%.Moreover,under the situation of swept frequency excitation,when the excitation frequency is near the natural frequency of the structure,the GCV method can achieve much higher accuracy compared with direct inversion.At other excitation frequencies,the average recognition error of the GCV method load identification less than 10%.
基金a contract from the Federal Highway Adiministration(Contract No.ETFH61-98-C-00094)a Grant from the Earthquake Education Research Centers Program of the National Science Foundation to the Multidisciplinary Center for Earthquake Engineering Research(Grant No.EEC-9701471)
文摘This paper is the second in a two-part series that discusses the principal axes of M-DOF structures subjected to static and dynamic loads.The primary purpose of this series is to understand the magnitude of the dynamie response of structures to enable better design of structures and response modification devices/systems.Under idealized design condi- tions,the structural responses are obtained by using single directinn input ground motions in the direction of the intended response modification devices/systems,and by assuming that the responses of the structure is deconpleable in three mutual- ly perpendicular directions.This standard practice has been applied to both new and retrofitted structures using various seis- mic protective systems.Very limited information is available on the effects of neglecting the impact of directional couplings (cross effects of which torsion is a component)of the dynamic response of structures.In order to quantify such effects,it is necessary to examine the principal axes of structures under both static and dynamic loading.In this twn-part series,the first paper is concerned with static loading,which provides definitions and fundamental formulations,with the conclusion that cross effects of a statically loaded M-DOF structure resulting from the lack of principal axes are of insignificant magnitude. However,under dynamic or earthquake loading,a relatively small amount of energy transferred across perpendicular direc- tions is accumulated,which may result in significant enlargement of the structural response.This paper deals with a formu- lation to define the principal axes of M-DOF structures under dynamic loading and develops quantitative measures to identify cross effects resuhing from the non-existence of principal axes.
基金financially supported by the Director Fund of National Energy Deepwater Oil and Gas Engineering Technology Research and Development Center(Grant No.KJQZ-2024-2103)。
文摘The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.
文摘A kind of novel electromagnetic structure of Cassini cross section is proposed and simulation is implemented with business microwave soft CST based on finite integral technique (FIT). The electromagnetic field mode type of Cassini wave-guide belongs to TE, and the electromagnetic field intensity is stronger near the neck region than at other areas. For Cassini electromagnetic patches and lumped elements, the radar cross section (RCS) is smaller around 7 GHz with -30.85 dBsm, and the absorbing property is better around 13 GHz with 4.56 dBsm difference of RCS from comparing of pure medium. For novel radiation structure of Cassini cross-section patches, the electromagnetic field value is larger in the neck areas of two half patches. At last, the potential application and development of Cassini oval structure are put forward in the electromagnetic stealth technology and antennae design.
文摘The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soil-structure dynamic interaction research considering adjacent structures was proposed as reference for researchers.The existing matter and the prospect of future research trend in this field was also examined.
文摘Bone-like nanohydroxyapatite powders (b-nanoHA) were synthesized in simulated body fluid (SBF). The b-nanoHA, gelatin (Gel) and Polyvinyl Alcohol (PVA) were used to prepare bone-like composites (b-nanoHA/ Gel/PVA) at room temperature. Characterizations of b-nanoHA powders and b-nanoHA/Gel/PVA composites were investigated by using X-ray diffraction (XRD), transmission electron microscopy (TEM), High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Bending strength and compressive strength of the composite were tested. It was found that microstructure of the b-nanoHA powders was whisker shape and its crystalline degree was low similar to natural bone, bending strength and compressive strength of the b-nanoHA/Gel/PVA composite depended on the mixing ratio of HA, Gel and PVA, and also PVA could induce the network formation in the b-nanoHA/Gel/ PVA composite.