Equal cross section lateral extrusion (ECSLE) is an effective method realizing pure shear deformation. The influence of friction factor on the deformation uniformity of ECSLE was investigated with rigid plastic finite...Equal cross section lateral extrusion (ECSLE) is an effective method realizing pure shear deformation. The influence of friction factor on the deformation uniformity of ECSLE was investigated with rigid plastic finite element method. The result shows that the non-uniform deformation in extrusion is caused mainly by the friction between workpiece and die. The higher the friction factor is, the more uneven plastic deformation resulted in extruded workpiece. The relation curve of deformation uniformity vs. friction factor was drawn based on the analysis result. The curve can be used as a basis of ECSLE process design.展开更多
Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pr...Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.展开更多
文摘Equal cross section lateral extrusion (ECSLE) is an effective method realizing pure shear deformation. The influence of friction factor on the deformation uniformity of ECSLE was investigated with rigid plastic finite element method. The result shows that the non-uniform deformation in extrusion is caused mainly by the friction between workpiece and die. The higher the friction factor is, the more uneven plastic deformation resulted in extruded workpiece. The relation curve of deformation uniformity vs. friction factor was drawn based on the analysis result. The curve can be used as a basis of ECSLE process design.
基金Financial supports are from the National Natural Science Foundation of China (No. 50874104)the Scientific Research Industrialization Project of Jiangsu Universities (No. JH07-023)
文摘Deep large span cut holes are difficult to stabilize. The 7801 cut hole in the Lu'an Wuyang Mine was used as this project's background. The main factors affecting large span cut hole stability are analyzed. Pre- stressed bolting theory was used to design a roof control method for a large span roadway. By reducing the span and applying equal strength coordinated supports the rock could be stabilized. The control prin- ciples and methods are given herein along with the analysis. A double micro arch cross section roadway is defined and its use in solving the current problem is described. Beam arch theory was used to build a model of the double micro arch cross section roadway. A support reverse force model for the arch foot intersection was also derived. A support method based upon reducing the width of the large span in the cut hole is presented. These results show that the reduced span of the roadway roof plus the use of cable anchors and single supports gives an effective way to control the large span cut hole. On site monitoring showed that the reduced span support from the double micro arch cross section roadway design had a significant effect. The roadway surface displacement was small and harmful deformation of the cut hole was effectively controlled. This will ensure its long term stability.