Query expansion with thesaurus is one of the useful techniques in modern information retrieval (IR). In this paper, a method of query expansion for Chinese IR by using a decaying co-occurrence model is proposed and re...Query expansion with thesaurus is one of the useful techniques in modern information retrieval (IR). In this paper, a method of query expansion for Chinese IR by using a decaying co-occurrence model is proposed and realized. The model is an extension of the traditional co-occurrence model by adding a decaying factor that decreases the mutual information when the distance between the terms increases. Experimental results on TREC-9 collections show this query expansion method results in significant improvements over the IR without query expansion.展开更多
Bilingual word vectors have been exploited a lot in cross-language information retrieval research. However, most of the research is currently focused on similar language pairs. There are very few studies exploring the...Bilingual word vectors have been exploited a lot in cross-language information retrieval research. However, most of the research is currently focused on similar language pairs. There are very few studies exploring the impact of using bilingual word vectors for cross-language information retrieval in long-distance language pairs. In this paper, it systematically analyzes the retrieval performance of various European languages (English, German, Italian, French, Finnish, Dutch) as well as Asian languages (Chinese, Japanese) in the adhoc task of CLEF 2002–2003 campaign. Genetic proximity was used to visually represent the relationships between languages and compare their crosslingual retrieval performance in various settings. The results show that the differences in language vocabulary would dramatically affect the retrieval performance. At the same time, the term by term translation retrieval method performs slightly better than the simple vector addition retrieval methods. It proves that the translation-based retrieval model can still maintain its advantage under the new semantic scheme.展开更多
To eliminate the mismatch between words of relevant documents and user's query and more seriousnegative effects it has on the performance of information retrieval,a method of query expansion on the ba-sis of new t...To eliminate the mismatch between words of relevant documents and user's query and more seriousnegative effects it has on the performance of information retrieval,a method of query expansion on the ba-sis of new terms co-occurrence representation was put forward by analyzing the process of producingquery.The expansion terms were selected according to their correlation to the whole query.At the sametime,the position information between terms were considered.The experimental result on test retrievalconference(TREC)data collection shows that the method proposed in the paper has made an improve-ment of 5%~19% all the time than the language modeling method without expansion.Compared to thepopular approach of query expansion,pseudo feedback,the precision of the proposed method is competi-tive.展开更多
A language model for information retrieval is built by using a query language model to generate queries and a document language model to generate documents. The documents are ranked according to the relative entropies...A language model for information retrieval is built by using a query language model to generate queries and a document language model to generate documents. The documents are ranked according to the relative entropies of estimated document language models with respect to the estimated query language model. Two popular and relatively efficient smoothing methods, the Jelinek- Mercer method and the absolute discounting method, are used to smooth the document language model in estimation of the document language, A combined model composed of the feedback document language model and the collection language model is used to estimate the query model. A performacne comparison between the new retrieval method and the existing method with feedback is made, and the retrieval performances of the proposed method with the two different smoothing techniques are evaluated on three Text Retrieval Conference (TREC) data sets. Experimental results show that the method is effective and performs better than the basic language modeling approach; moreover, the method using the Jelinek-Mercer technique performs better than that using the absolute discounting technique, and the perfomance is sensitive to the smoothing peramters.展开更多
The recent developments in Multimedia Internet of Things(MIoT)devices,empowered with Natural Language Processing(NLP)model,seem to be a promising future of smart devices.It plays an important role in industrial models...The recent developments in Multimedia Internet of Things(MIoT)devices,empowered with Natural Language Processing(NLP)model,seem to be a promising future of smart devices.It plays an important role in industrial models such as speech understanding,emotion detection,home automation,and so on.If an image needs to be captioned,then the objects in that image,its actions and connections,and any silent feature that remains under-projected or missing from the images should be identified.The aim of the image captioning process is to generate a caption for image.In next step,the image should be provided with one of the most significant and detailed descriptions that is syntactically as well as semantically correct.In this scenario,computer vision model is used to identify the objects and NLP approaches are followed to describe the image.The current study develops aNatural Language Processing with Optimal Deep Learning Enabled Intelligent Image Captioning System(NLPODL-IICS).The aim of the presented NLPODL-IICS model is to produce a proper description for input image.To attain this,the proposed NLPODL-IICS follows two stages such as encoding and decoding processes.Initially,at the encoding side,the proposed NLPODL-IICS model makes use of Hunger Games Search(HGS)with Neural Search Architecture Network(NASNet)model.This model represents the input data appropriately by inserting it into a predefined length vector.Besides,during decoding phase,Chimp Optimization Algorithm(COA)with deeper Long Short Term Memory(LSTM)approach is followed to concatenate the description sentences 4436 CMC,2023,vol.74,no.2 produced by the method.The application of HGS and COA algorithms helps in accomplishing proper parameter tuning for NASNet and LSTM models respectively.The proposed NLPODL-IICS model was experimentally validated with the help of two benchmark datasets.Awidespread comparative analysis confirmed the superior performance of NLPODL-IICS model over other models.展开更多
文摘Query expansion with thesaurus is one of the useful techniques in modern information retrieval (IR). In this paper, a method of query expansion for Chinese IR by using a decaying co-occurrence model is proposed and realized. The model is an extension of the traditional co-occurrence model by adding a decaying factor that decreases the mutual information when the distance between the terms increases. Experimental results on TREC-9 collections show this query expansion method results in significant improvements over the IR without query expansion.
基金National Natural Science Foundation of China under Project No. 61876062Scientific Research Fund of Hunan Provincial Education Department of China under Project No. 16K030Hunan Provincial Natural Science Foundation of China under Project No. 2017JJ2101, Hunan Provincial Innovation Foundation for Postgraduate under Project No. CX2018B671.
文摘Bilingual word vectors have been exploited a lot in cross-language information retrieval research. However, most of the research is currently focused on similar language pairs. There are very few studies exploring the impact of using bilingual word vectors for cross-language information retrieval in long-distance language pairs. In this paper, it systematically analyzes the retrieval performance of various European languages (English, German, Italian, French, Finnish, Dutch) as well as Asian languages (Chinese, Japanese) in the adhoc task of CLEF 2002–2003 campaign. Genetic proximity was used to visually represent the relationships between languages and compare their crosslingual retrieval performance in various settings. The results show that the differences in language vocabulary would dramatically affect the retrieval performance. At the same time, the term by term translation retrieval method performs slightly better than the simple vector addition retrieval methods. It proves that the translation-based retrieval model can still maintain its advantage under the new semantic scheme.
基金the High Technology Research and Development Program of China(No.2006AA01Z150)the National Natural Science Foundation of China(No.60435020)
文摘To eliminate the mismatch between words of relevant documents and user's query and more seriousnegative effects it has on the performance of information retrieval,a method of query expansion on the ba-sis of new terms co-occurrence representation was put forward by analyzing the process of producingquery.The expansion terms were selected according to their correlation to the whole query.At the sametime,the position information between terms were considered.The experimental result on test retrievalconference(TREC)data collection shows that the method proposed in the paper has made an improve-ment of 5%~19% all the time than the language modeling method without expansion.Compared to thepopular approach of query expansion,pseudo feedback,the precision of the proposed method is competi-tive.
基金The National Natural Science Founda-tion of China ( No. 60473004)the Science and ResearchFoundation Program of Henan University of Science and Tech-nology (No.2004ZY041)the Natural and Science FoundationProgram of the Education Department of Henan Province (No.200410464004)
文摘A language model for information retrieval is built by using a query language model to generate queries and a document language model to generate documents. The documents are ranked according to the relative entropies of estimated document language models with respect to the estimated query language model. Two popular and relatively efficient smoothing methods, the Jelinek- Mercer method and the absolute discounting method, are used to smooth the document language model in estimation of the document language, A combined model composed of the feedback document language model and the collection language model is used to estimate the query model. A performacne comparison between the new retrieval method and the existing method with feedback is made, and the retrieval performances of the proposed method with the two different smoothing techniques are evaluated on three Text Retrieval Conference (TREC) data sets. Experimental results show that the method is effective and performs better than the basic language modeling approach; moreover, the method using the Jelinek-Mercer technique performs better than that using the absolute discounting technique, and the perfomance is sensitive to the smoothing peramters.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R161)PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the|Deanship of Scientific Research at Umm Al-Qura University|for supporting this work by Grant Code:(22UQU4310373DSR33).
文摘The recent developments in Multimedia Internet of Things(MIoT)devices,empowered with Natural Language Processing(NLP)model,seem to be a promising future of smart devices.It plays an important role in industrial models such as speech understanding,emotion detection,home automation,and so on.If an image needs to be captioned,then the objects in that image,its actions and connections,and any silent feature that remains under-projected or missing from the images should be identified.The aim of the image captioning process is to generate a caption for image.In next step,the image should be provided with one of the most significant and detailed descriptions that is syntactically as well as semantically correct.In this scenario,computer vision model is used to identify the objects and NLP approaches are followed to describe the image.The current study develops aNatural Language Processing with Optimal Deep Learning Enabled Intelligent Image Captioning System(NLPODL-IICS).The aim of the presented NLPODL-IICS model is to produce a proper description for input image.To attain this,the proposed NLPODL-IICS follows two stages such as encoding and decoding processes.Initially,at the encoding side,the proposed NLPODL-IICS model makes use of Hunger Games Search(HGS)with Neural Search Architecture Network(NASNet)model.This model represents the input data appropriately by inserting it into a predefined length vector.Besides,during decoding phase,Chimp Optimization Algorithm(COA)with deeper Long Short Term Memory(LSTM)approach is followed to concatenate the description sentences 4436 CMC,2023,vol.74,no.2 produced by the method.The application of HGS and COA algorithms helps in accomplishing proper parameter tuning for NASNet and LSTM models respectively.The proposed NLPODL-IICS model was experimentally validated with the help of two benchmark datasets.Awidespread comparative analysis confirmed the superior performance of NLPODL-IICS model over other models.