To improve the robustness of the Low Earth Orbit(LEO) satellites networks and realise load balancing, a Cross-layer design and Ant-colony optimization based Load-balancing routing algorithm for LEO Satellite Networks(...To improve the robustness of the Low Earth Orbit(LEO) satellites networks and realise load balancing, a Cross-layer design and Ant-colony optimization based Load-balancing routing algorithm for LEO Satellite Networks(CAL-LSN) is proposed in this paper. In CALLSN, mobile agents are used to gather routing information actively. CAL-LSN can utilise the information of the physical layer to make routing decision during the route construction phase. In order to achieve load balancing, CALLSN makes use of a multi-objective optimization model. Meanwhile, how to take the value of some key parameters is discussed while designing the algorithm so as to improve the reliability. The performance is measured by the packet delivery rate, the end-to-end delay, the link utilization and delay jitter. Simulation results show that CAL-LSN performs well in balancing traffic load and increasing the packet delivery rate. Meanwhile, the end-to-end delay and delay jitter performance can meet the requirement of video transmission.展开更多
The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation ...The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.展开更多
This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ...This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.展开更多
This paper describes the deployment optimization technology and the cross-layer design of a surveil-lance WSN system applied in relic protection.Facing the typical technical challenges in the applicationcontext of rel...This paper describes the deployment optimization technology and the cross-layer design of a surveil-lance WSN system applied in relic protection.Facing the typical technical challenges in the applicationcontext of relic protection,we firstly propose a deployment technology based on ant colony optimization al-gorithm(DT-ACO)to overcome the difficulties in communication connectivity and sensing coverage.Meanwhile,DT-ACO minimizes the overall cost of the system as much as possible.Secondly we proposea novel power-aware cross-layer scheme(PACS)to facilitate adjustable system lifetime and surveillanceaccuracy.The performance analysis shows that we achieve lower device cost,significant extension of thesystem lifetime and improvement on the data delivery rate compared with the traditional methods.展开更多
In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairne...In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairness, revenue and cost is elaborated in WCDMA networks. Then, the optimal rate allocation problem is formulated as a network utility maximization(NUM) model based on cross-layer design and end-to-end congestion control, aiming at exploring the impacts of wired networks and the characteristics of radio access networks(RANs) on rate allocation. Furthermore, a distributed algorithm is derived, which can effectively match load states between RANs and wired networks, followed by a detailed illustration of the practical implementations. Numerical results demonstrate a signifi cant performance improvement in the end-to-end throughput.展开更多
A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding...A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.展开更多
Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, del...Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, delay and target data rate in the medium ac-cess control layer, urgent queue length in the network layer, and packet error rate in the transport layer, have been considered. The original problem is non-deterministic polyno-mial time hard, which cannot be solved practi-cally. After the restrictions of upper layers are translated into constraints with physical layer parameters, and the integer restrictions are relaxed, the original problem can be decom- posed into convex optimization subproblems. The optimal solutions of resource block allo-cation and power allocation can be obtained by using the Lagrangian optimization. Simula-tion results show that the proposed scheme is better than both the round robin algorithm and the max-rain one in terms of energy efficiency, throughput and service fairness. The round robin algorithm and the max-min one only focus on the user fairness rather than quality of service fairness. Compared to the round robin scheme (the max-min one), the proposed scheme improves the energy efficiency 58.85% (62.41%), the throughput 19.09% (25.25%), the service fairness 57.69% (35.48%).展开更多
We propose the spectrum allocation and resource scheduling algorithms in cognitive point to multipoint (PMP) networks with rapid changes of spectrum opportunities and present a media access control (MAC) protocol base...We propose the spectrum allocation and resource scheduling algorithms in cognitive point to multipoint (PMP) networks with rapid changes of spectrum opportunities and present a media access control (MAC) protocol based on these algorithms. The objective of spectrum allocation is to make efficient use of the spectrum while maintaining the transceiver synchronization on frequency and time in the network. The objective of resource scheduling is to guarantee the quality of service (QoS) requirements of different kinds of connections and to minimize the total energy consumption in the network as well. By sensing only a small set of possible channels in each slot based on the state transition probability of each channel, our spectrum allocation algorithm achieves high spectrum efficiency in the network. The resource scheduling problem is divided into three sub problems and we derive optimal solutions to these problems by greedy algorithm and convex optimization. The simulation results show that our algorithm can make efficient use of the spectrum and the network resources at a cost of low computational complexity.展开更多
Energy harvesting(EH)technology in wireless communication is a promising approach to extend the lifetime of future wireless networks.A cross-layer optimal adaptation policy for a point-to-point energy harvesting(EH)wi...Energy harvesting(EH)technology in wireless communication is a promising approach to extend the lifetime of future wireless networks.A cross-layer optimal adaptation policy for a point-to-point energy harvesting(EH)wireless communication system with finite buffer constraints over a Rayleigh fading channel based on a Semi-Markov Decision Process(SMDP)is investigated.Most adaptation strategies in the literature are based on channeldependent adaptation.However,besides considering the channel,the state of the energy capacitor and the data buffer are also involved when proposing a dynamic modulation policy for EH wireless networks.Unlike the channeldependent policy,which is a physical layer-based optimization,the proposed cross-layer dynamic modulation policy is a guarantee to meet the overflow requirements of the upper layer by maximizing the throughput while optimizing the transmission power and minimizing the dropping packets.Based on the states of the channel conditions,data buffer,and energy capacitor,the scheduler selects a particular action corresponding to the selected modulation constellation.Moreover,the packets are modulated into symbols according to the selected modulation type to be ready for transmission over the Rayleigh fading channel.Simulations are used to test the performance of the proposed cross-layer policy scheme,which shows that it significantly outperforms the physical layer channel-dependent policy scheme in terms of throughput only.展开更多
A proactive routing protocol CL-OLSR (cross-layer based optimized link state routing) by using a brand-new routing metric CLM (cross-layer metric) is proposed. CL-OLSR takes into account four link quality impact f...A proactive routing protocol CL-OLSR (cross-layer based optimized link state routing) by using a brand-new routing metric CLM (cross-layer metric) is proposed. CL-OLSR takes into account four link quality impact factors in route calculation through the cross-layer operation mechanism: the node available bandwidth, the node load, the link delivery rate, and the link interference, and thus the effect of route selection is optimized greatly. The simulation results show that the proposed CL-OLSR protocol can not only improve the network throughput to a large extent, but also reduce the end-to-end delay, while achieving load balance route results.展开更多
In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is...In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.展开更多
To provide quality-of service (QoS) guarantees for heterogeneous applications, most recent wireless communications technologies and standards combine the error-correcting capability of hybrid automatic repeat request ...To provide quality-of service (QoS) guarantees for heterogeneous applications, most recent wireless communications technologies and standards combine the error-correcting capability of hybrid automatic repeat request (HARQ) schemes at the data link layer (DLL) with the adaptation ability of the adaptive modulation and coding (AMC) modes at the physical layer (PHY) layer. This paper aims to investigate the aggregated system capacity as well as the breakdown of this capacity for different ACM modes in each HARQ scheme. This investigation was done by using maximum weighted capacity (MWC) resource allocation at the PHY layer in conjunction with a novel packet error rate (PER)-based scheduling at the medium access control (MAC) layer. As a result, the dominant AMC mode corresponding to channel SNR was available.展开更多
Since most ad hoc mobile devices today operate on batteries,the power consumption becomes an important issue.This paper proposes a cross-layer design of energy-aware ad hoc on-demand distance vector(CEAODV) routing pr...Since most ad hoc mobile devices today operate on batteries,the power consumption becomes an important issue.This paper proposes a cross-layer design of energy-aware ad hoc on-demand distance vector(CEAODV) routing protocol which adopts cross-layer mechanism and energy-aware metric to improve AODV routing protocol to reduce the energy consumption and then prolong the life of the whole network.In CEAODV,the link layer and the routing layer work together to choose the optimized transmission power for nodes and the route for packets.The link layer provides the energy consumption information for the routing layer and the routing layer chooses route accordingly and conversely controls the link layer to adjust the transmission power.The simulation result shows that CEAODV can outperform AODV to save more energy.It can reduce the consumed energy by about 8%over traditional energy-aware algorithm.And the performance is better when the traffic load is higher in the network.展开更多
A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay syst...A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher.展开更多
This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous work...This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous works on this topic, the present development and the performance analysis as well, is based on rate compatible punctured turbo codes. Rate compatibility provides incremental redundancy in transmission of parity bits for error correction at the data link layer. Turbo coding and iterative decoding gives lower packet error rate values in low signal-to-noise ratio regions of the adaptive modulation and coding (AMC) schemes. Thus, the applied cross-layer design results in AMC schemes can achieve better spectral efficiency than convolutional one while it retains the QoS requirements at the application layer. Numerical results in terms of spectral efficiency for both turbo and convolutional rate compatible punctured codes are presented. For a more comprehensive presentation, the performance of rate compatible LDPC is contrasted with turbo case as well as the performance complexity is discussed for each of the above codes.展开更多
In recent years,there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks.Despite these efforts,the detection of small objects in re...In recent years,there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks.Despite these efforts,the detection of small objects in remote sensing remains a formidable challenge.The deep network structure will bring about the loss of object features,resulting in the loss of object features and the near elimination of some subtle features associated with small objects in deep layers.Additionally,the features of small objects are susceptible to interference from background features contained within the image,leading to a decline in detection accuracy.Moreover,the sensitivity of small objects to the bounding box perturbation further increases the detection difficulty.In this paper,we introduce a novel approach,Cross-Layer Fusion and Weighted Receptive Field-based YOLO(CAW-YOLO),specifically designed for small object detection in remote sensing.To address feature loss in deep layers,we have devised a cross-layer attention fusion module.Background noise is effectively filtered through the incorporation of Bi-Level Routing Attention(BRA).To enhance the model’s capacity to perceive multi-scale objects,particularly small-scale objects,we introduce a weightedmulti-receptive field atrous spatial pyramid poolingmodule.Furthermore,wemitigate the sensitivity arising from bounding box perturbation by incorporating the joint Normalized Wasserstein Distance(NWD)and Efficient Intersection over Union(EIoU)losses.The efficacy of the proposedmodel in detecting small objects in remote sensing has been validated through experiments conducted on three publicly available datasets.The experimental results unequivocally demonstrate the model’s pronounced advantages in small object detection for remote sensing,surpassing the performance of current mainstream models.展开更多
In order to periodically reassess the status of the alternate path route(APR)set and to improve the efficiency of alternate path construction existing in most current alter-nate path routing protocols,we present a cro...In order to periodically reassess the status of the alternate path route(APR)set and to improve the efficiency of alternate path construction existing in most current alter-nate path routing protocols,we present a cross-layer design and ant-colony optimization based load-balancing routing protocol for ad-hoc networks(CALRA)in this paper.In CALRA,the APR set maintained in nodes is aged and reas-sessed by the inherent mechanism of pheromone evaporation of ant-colony optimization algorithm,and load balance of network is achieved by ant-colony optimization combining with cross-layer synthetic optimization.The efficiency of APR set construction is improved by bidirectional and hop-by-hop routing update during routing discovery and routing maintenance process.Moreover,ants in CALRA deposit simulated pheromones as a function of multiple parameters corresponding to the information collected by each layer of each node visited,such as the distance from their source node,the congestion degree of the visited nodes,the current pheromones the nodes possess,the velocity of the nodes,and so on,and provide the information to the visiting nodes to update their pheromone tables by endowing the different parameters corresponding to different information and different weight values,which provides a new method to improve the congestion problem,the shortcut problem,the convergence rate and the heavy overheads commonly existed in existing ant-based routing protocols for ad-hoc networks.The performance of the algorithm is measured by the packet delivery rate,good-put ratio(routing overhead),and end-to-end delay.Simulation results show that CALRA performs well in decreasing the route overheads,balancing traffic load,as well as increasing the packet delivery rate,etc.展开更多
This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control (MAC),network and transport layers.As is well known,the conve...This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control (MAC),network and transport layers.As is well known,the conventional layered-protocol architecture can not provide optimal performance for wireless networks,and cross-layer design is becoming increasingly important for improving the performance of wireless networks.In this study,we formulate a specific network utility maximization (NUM) problem that we believe is appropriate for multihop wireless networks.By using the dual algorithm,the NUM problem has been optimal decomposed and solved with a novel distributed cross-layer design algorithm from physical to transport layers.Our solution enjoys the benefits of cross-layer optimization while maintaining the simplicity and modularity of the traditional layered architecture.The proposed cross-layer design can guarantee the end-to-end goals of data flows while fully utilizing network resources.Computer simulations have evaluated an enhanced performance of the proposed algorithm at both average source rate and network throughput.Meanwhile,the proposed algorithm has low implementation complexity for practical reality.展开更多
According to the quality of service (QoS) requirements of differentiated service (DiffServ), a cross-layer resource allocation algorithm for multi-user orthogonal frequency division multiplexing (OFDM) systems i...According to the quality of service (QoS) requirements of differentiated service (DiffServ), a cross-layer resource allocation algorithm for multi-user orthogonal frequency division multiplexing (OFDM) systems is presented. The constant rate is maintained by adjusting the power dynamically for the voice traffics with high priority, whereas the fairness amongst the data traffics is guaranteed by weighted fairness queued (WFQ) algorithm. The two above-mentioned strategies are used for video traffics to realize variable data rate with the constraint of the minimum rate. Combing all these methods, both the throughput and the fairness are ensured when there are multiple users in the OFDM system. Simulation results indicate the validity of the proposed algorithm, which can work well even if the SNR is less than 0 dB.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61271281the National High Technology Research and Development Program of China (863 Program) under Grant No.SS2013AA010503
文摘To improve the robustness of the Low Earth Orbit(LEO) satellites networks and realise load balancing, a Cross-layer design and Ant-colony optimization based Load-balancing routing algorithm for LEO Satellite Networks(CAL-LSN) is proposed in this paper. In CALLSN, mobile agents are used to gather routing information actively. CAL-LSN can utilise the information of the physical layer to make routing decision during the route construction phase. In order to achieve load balancing, CALLSN makes use of a multi-objective optimization model. Meanwhile, how to take the value of some key parameters is discussed while designing the algorithm so as to improve the reliability. The performance is measured by the packet delivery rate, the end-to-end delay, the link utilization and delay jitter. Simulation results show that CAL-LSN performs well in balancing traffic load and increasing the packet delivery rate. Meanwhile, the end-to-end delay and delay jitter performance can meet the requirement of video transmission.
基金supported in part by the National Natural Science Foundation of China (No. 61971220)the Fundamental Research Funds for the Central Universities of Nanjing University of Aeronautics and Astronautics(NUAA)(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China (No. BK20181289)。
文摘The performance of uplink distributed massive multiple-input multiple-output(MIMO)systems with crosslayer design(CLD) is investigated over Rayleigh fading channel, which combines the discrete rate adaptive modulation with truncated automatic repeat request. By means of the performance analysis, the closed-form expressions of average packet error rate(APER)and overall average spectral efficiency(ASE)of distributed massive MIMO systems with CLD are derived based on the conditional probability density function of each user’s approximate effective signal-to-noise ratio(SNR)and the switching thresholds under the target packet loss rate(PLR)constraint.With these results,using the approximation of complementary error functions,the approximate APER and overall ASE are also deduced. Simulation results illustrate that the obtained theoretical ASE and APER can match the corresponding simulations well. Besides,the target PLR requirement is satisfied,and the distributed massive MIMO systems offer an obvious performance gain over the co-located massive MIMO systems.
基金supported by the National Natural Science Foundation of China(No.61675033,61575026,61675233)National High Technical Research and Development Program of China(No.2015AA015504)
文摘This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2006AA01Z215)the National Natural Science Foundation of China (No. 60572060+2 种基金 60533110)the National Basic Research Program of China (973)( No. 2006CB303000)the CAS Innovation Proiect (No. KGCX2-YW-110-3)
文摘This paper describes the deployment optimization technology and the cross-layer design of a surveil-lance WSN system applied in relic protection.Facing the typical technical challenges in the applicationcontext of relic protection,we firstly propose a deployment technology based on ant colony optimization al-gorithm(DT-ACO)to overcome the difficulties in communication connectivity and sensing coverage.Meanwhile,DT-ACO minimizes the overall cost of the system as much as possible.Secondly we proposea novel power-aware cross-layer scheme(PACS)to facilitate adjustable system lifetime and surveillanceaccuracy.The performance analysis shows that we achieve lower device cost,significant extension of thesystem lifetime and improvement on the data delivery rate compared with the traditional methods.
基金supported by National Natural Science Foundation of China (61172079, 61231008, 61201141, 61301176)111 Project (B08038)+1 种基金National S&T Major Project (2010ZX03003001)Shaanxi Province Science and Technology Research and Development Program (2011KJXX-40)
文摘In this paper, a novel idea for rate allocation combining both vertical coupling and horizontal coupling constraints is proposed, and a unified utility function to balance two paradoxical issues: efficiency and fairness, revenue and cost is elaborated in WCDMA networks. Then, the optimal rate allocation problem is formulated as a network utility maximization(NUM) model based on cross-layer design and end-to-end congestion control, aiming at exploring the impacts of wired networks and the characteristics of radio access networks(RANs) on rate allocation. Furthermore, a distributed algorithm is derived, which can effectively match load states between RANs and wired networks, followed by a detailed illustration of the practical implementations. Numerical results demonstrate a signifi cant performance improvement in the end-to-end throughput.
基金Supported by the Foundation of Huaian Industrial Projects(HAG2013064)the Foundation of Huaiyin Institute of Technology(HGB1202)the Doctoral Fund of Ministry of Education of China(20093218120021)
文摘A cross-layer design(CLD)scheme with combination of power allocation,adaptive modulation(AM)and automatic repeat request(ARQ)is presented for space-time coded MIMO system under imperfect feedback,and the corresponding system performance is investigated in a Rayleigh fading channel.Based on imperfect feedback information,a suboptimal power allocation(PA)scheme is derived to maximize the average spectral efficiency(SE)of the system.The scheme is based on a so-called compressed SNR criterion,and has a closed-form expression for positive power allocation,thus being computationally efficient.Moreover,it can improve SE of the presented CLD.Besides,due to better approximation,it obtains the performance close to the existing optimal approach which requires numerical search.Simulation results show that the proposed CLD with PA can achieve higher SE than the conventional CLD with equal power allocation scheme,and has almost the same performance as CLD with optimal PA.However,it has lower calculation complexity.
基金supported in part by the project of National Natural Science Foundation of China under Grant No. 61071075National Science and Technology Major Project of China under Grant No. 2010ZX03003-001-02+1 种基金National Science and Technology Major Project of China under Grant No. 2011ZX03004003the Chinese Ministry of Education in the project of the Fundamental Research Funds for the Central Universities under Grant No.2011YJS216
文摘Based on the cross-layer design, the power-optimization problem of Macro-Femto Heterogeneous Networks (HetNets) has been formulated. The constraints of power and re-source block allocation in the physical layer, delay and target data rate in the medium ac-cess control layer, urgent queue length in the network layer, and packet error rate in the transport layer, have been considered. The original problem is non-deterministic polyno-mial time hard, which cannot be solved practi-cally. After the restrictions of upper layers are translated into constraints with physical layer parameters, and the integer restrictions are relaxed, the original problem can be decom- posed into convex optimization subproblems. The optimal solutions of resource block allo-cation and power allocation can be obtained by using the Lagrangian optimization. Simula-tion results show that the proposed scheme is better than both the round robin algorithm and the max-rain one in terms of energy efficiency, throughput and service fairness. The round robin algorithm and the max-min one only focus on the user fairness rather than quality of service fairness. Compared to the round robin scheme (the max-min one), the proposed scheme improves the energy efficiency 58.85% (62.41%), the throughput 19.09% (25.25%), the service fairness 57.69% (35.48%).
基金Project (No. 2006AA01Z273) supported by the National Hi-TechResearch and Development Program (863) of China
文摘We propose the spectrum allocation and resource scheduling algorithms in cognitive point to multipoint (PMP) networks with rapid changes of spectrum opportunities and present a media access control (MAC) protocol based on these algorithms. The objective of spectrum allocation is to make efficient use of the spectrum while maintaining the transceiver synchronization on frequency and time in the network. The objective of resource scheduling is to guarantee the quality of service (QoS) requirements of different kinds of connections and to minimize the total energy consumption in the network as well. By sensing only a small set of possible channels in each slot based on the state transition probability of each channel, our spectrum allocation algorithm achieves high spectrum efficiency in the network. The resource scheduling problem is divided into three sub problems and we derive optimal solutions to these problems by greedy algorithm and convex optimization. The simulation results show that our algorithm can make efficient use of the spectrum and the network resources at a cost of low computational complexity.
基金The authors would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No-R-2021-60.
文摘Energy harvesting(EH)technology in wireless communication is a promising approach to extend the lifetime of future wireless networks.A cross-layer optimal adaptation policy for a point-to-point energy harvesting(EH)wireless communication system with finite buffer constraints over a Rayleigh fading channel based on a Semi-Markov Decision Process(SMDP)is investigated.Most adaptation strategies in the literature are based on channeldependent adaptation.However,besides considering the channel,the state of the energy capacitor and the data buffer are also involved when proposing a dynamic modulation policy for EH wireless networks.Unlike the channeldependent policy,which is a physical layer-based optimization,the proposed cross-layer dynamic modulation policy is a guarantee to meet the overflow requirements of the upper layer by maximizing the throughput while optimizing the transmission power and minimizing the dropping packets.Based on the states of the channel conditions,data buffer,and energy capacitor,the scheduler selects a particular action corresponding to the selected modulation constellation.Moreover,the packets are modulated into symbols according to the selected modulation type to be ready for transmission over the Rayleigh fading channel.Simulations are used to test the performance of the proposed cross-layer policy scheme,which shows that it significantly outperforms the physical layer channel-dependent policy scheme in terms of throughput only.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2009j006Foundation of Science & Technology Department of Sichuan Province under Grant No.2011GZ0192
文摘A proactive routing protocol CL-OLSR (cross-layer based optimized link state routing) by using a brand-new routing metric CLM (cross-layer metric) is proposed. CL-OLSR takes into account four link quality impact factors in route calculation through the cross-layer operation mechanism: the node available bandwidth, the node load, the link delivery rate, and the link interference, and thus the effect of route selection is optimized greatly. The simulation results show that the proposed CL-OLSR protocol can not only improve the network throughput to a large extent, but also reduce the end-to-end delay, while achieving load balance route results.
基金Supported by the National Natural Science Foundation of China(No.61675033,61575026,61675232,61571440)the National High Technology Research and Development Program of China(No.2015AA015504)
文摘In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.
文摘To provide quality-of service (QoS) guarantees for heterogeneous applications, most recent wireless communications technologies and standards combine the error-correcting capability of hybrid automatic repeat request (HARQ) schemes at the data link layer (DLL) with the adaptation ability of the adaptive modulation and coding (AMC) modes at the physical layer (PHY) layer. This paper aims to investigate the aggregated system capacity as well as the breakdown of this capacity for different ACM modes in each HARQ scheme. This investigation was done by using maximum weighted capacity (MWC) resource allocation at the PHY layer in conjunction with a novel packet error rate (PER)-based scheduling at the medium access control (MAC) layer. As a result, the dominant AMC mode corresponding to channel SNR was available.
基金Supported by National Natural Science Foundation of China(No.90604013)Natural Science Foundation of Tianjin(No.08JCYBJC14200)National High Technology Research and Development Program("863"Program)of China(No.2007AA01Z220)
文摘Since most ad hoc mobile devices today operate on batteries,the power consumption becomes an important issue.This paper proposes a cross-layer design of energy-aware ad hoc on-demand distance vector(CEAODV) routing protocol which adopts cross-layer mechanism and energy-aware metric to improve AODV routing protocol to reduce the energy consumption and then prolong the life of the whole network.In CEAODV,the link layer and the routing layer work together to choose the optimized transmission power for nodes and the route for packets.The link layer provides the energy consumption information for the routing layer and the routing layer chooses route accordingly and conversely controls the link layer to adjust the transmission power.The simulation result shows that CEAODV can outperform AODV to save more energy.It can reduce the consumed energy by about 8%over traditional energy-aware algorithm.And the performance is better when the traffic load is higher in the network.
基金Sponsored by the National Science and Technology Major Special Project of China (Grant No.2011ZX03003-003-02)the Natural Science Foundation of China (Grant No. 60972070)+2 种基金the Natural Science Foundation of Chongqing (Grant No. CSTC2009BA2090)the Foundation of Chongqing Educational Committee ( Grant No. KJ100514)the Special Fund of Chongqing Key Laboratory
文摘A cross-layer design which combines adaptive modulation and coding (AMC) at the physical layer with a hybrid automatic repeat request (HARQ) protocol at the data link layer (LL) is presented, in cooperative relay system over Nakagami-m fading channels with perfect and imperfect channel state information (CSI). In order to maximize spectral efficiency (SE) under delay and packet error rate (PER) performance constraints, a state transition model and an optimization framework with perfect CSI are presented. Then the framework is extended to cooperative relay system with imperfect CSI. The numerical results show that the scheme can achieve maximum SE while satisfying transmitting delay requirements. Compared with the imperfect CSI, the average PER with perfect CSI is much lower and the spectral efficiency is much higher.
文摘This paper extends the work on cross-layer design which combines adaptive modulation and coding at the physical layer and hybrid automatic repeat request protocol at the data link layer. By contrast with previous works on this topic, the present development and the performance analysis as well, is based on rate compatible punctured turbo codes. Rate compatibility provides incremental redundancy in transmission of parity bits for error correction at the data link layer. Turbo coding and iterative decoding gives lower packet error rate values in low signal-to-noise ratio regions of the adaptive modulation and coding (AMC) schemes. Thus, the applied cross-layer design results in AMC schemes can achieve better spectral efficiency than convolutional one while it retains the QoS requirements at the application layer. Numerical results in terms of spectral efficiency for both turbo and convolutional rate compatible punctured codes are presented. For a more comprehensive presentation, the performance of rate compatible LDPC is contrasted with turbo case as well as the performance complexity is discussed for each of the above codes.
基金supported in part by the National Natural Science Foundation of China under Grant 62006071part by the Science and Technology Research Project of Henan Province under Grant 232103810086.
文摘In recent years,there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks.Despite these efforts,the detection of small objects in remote sensing remains a formidable challenge.The deep network structure will bring about the loss of object features,resulting in the loss of object features and the near elimination of some subtle features associated with small objects in deep layers.Additionally,the features of small objects are susceptible to interference from background features contained within the image,leading to a decline in detection accuracy.Moreover,the sensitivity of small objects to the bounding box perturbation further increases the detection difficulty.In this paper,we introduce a novel approach,Cross-Layer Fusion and Weighted Receptive Field-based YOLO(CAW-YOLO),specifically designed for small object detection in remote sensing.To address feature loss in deep layers,we have devised a cross-layer attention fusion module.Background noise is effectively filtered through the incorporation of Bi-Level Routing Attention(BRA).To enhance the model’s capacity to perceive multi-scale objects,particularly small-scale objects,we introduce a weightedmulti-receptive field atrous spatial pyramid poolingmodule.Furthermore,wemitigate the sensitivity arising from bounding box perturbation by incorporating the joint Normalized Wasserstein Distance(NWD)and Efficient Intersection over Union(EIoU)losses.The efficacy of the proposedmodel in detecting small objects in remote sensing has been validated through experiments conducted on three publicly available datasets.The experimental results unequivocally demonstrate the model’s pronounced advantages in small object detection for remote sensing,surpassing the performance of current mainstream models.
基金supported by the National Natural Science Foundation of China(Grant No.60472052 and 10577007)the Fund of the National Key Laboratory of Communication Program of University of Electronic Science and Technology of China(No.51434020105ZS04)the Fund of the Key Laboratory of Mobile Communication Program of Chongqing University of Posts and Telecommunications.
文摘In order to periodically reassess the status of the alternate path route(APR)set and to improve the efficiency of alternate path construction existing in most current alter-nate path routing protocols,we present a cross-layer design and ant-colony optimization based load-balancing routing protocol for ad-hoc networks(CALRA)in this paper.In CALRA,the APR set maintained in nodes is aged and reas-sessed by the inherent mechanism of pheromone evaporation of ant-colony optimization algorithm,and load balance of network is achieved by ant-colony optimization combining with cross-layer synthetic optimization.The efficiency of APR set construction is improved by bidirectional and hop-by-hop routing update during routing discovery and routing maintenance process.Moreover,ants in CALRA deposit simulated pheromones as a function of multiple parameters corresponding to the information collected by each layer of each node visited,such as the distance from their source node,the congestion degree of the visited nodes,the current pheromones the nodes possess,the velocity of the nodes,and so on,and provide the information to the visiting nodes to update their pheromone tables by endowing the different parameters corresponding to different information and different weight values,which provides a new method to improve the congestion problem,the shortcut problem,the convergence rate and the heavy overheads commonly existed in existing ant-based routing protocols for ad-hoc networks.The performance of the algorithm is measured by the packet delivery rate,good-put ratio(routing overhead),and end-to-end delay.Simulation results show that CALRA performs well in decreasing the route overheads,balancing traffic load,as well as increasing the packet delivery rate,etc.
基金supported by the National Natural Science Foundation of China (60971083)the Hi-Tech Research and Development Program of China (2009AA01Z206)the National International Science and Technology Cooperation Project (2010DFA11320)
文摘This paper puts forward a novel cognitive cross-layer design algorithms for multihop wireless networks optimization across physical,mediam access control (MAC),network and transport layers.As is well known,the conventional layered-protocol architecture can not provide optimal performance for wireless networks,and cross-layer design is becoming increasingly important for improving the performance of wireless networks.In this study,we formulate a specific network utility maximization (NUM) problem that we believe is appropriate for multihop wireless networks.By using the dual algorithm,the NUM problem has been optimal decomposed and solved with a novel distributed cross-layer design algorithm from physical to transport layers.Our solution enjoys the benefits of cross-layer optimization while maintaining the simplicity and modularity of the traditional layered architecture.The proposed cross-layer design can guarantee the end-to-end goals of data flows while fully utilizing network resources.Computer simulations have evaluated an enhanced performance of the proposed algorithm at both average source rate and network throughput.Meanwhile,the proposed algorithm has low implementation complexity for practical reality.
文摘According to the quality of service (QoS) requirements of differentiated service (DiffServ), a cross-layer resource allocation algorithm for multi-user orthogonal frequency division multiplexing (OFDM) systems is presented. The constant rate is maintained by adjusting the power dynamically for the voice traffics with high priority, whereas the fairness amongst the data traffics is guaranteed by weighted fairness queued (WFQ) algorithm. The two above-mentioned strategies are used for video traffics to realize variable data rate with the constraint of the minimum rate. Combing all these methods, both the throughput and the fairness are ensured when there are multiple users in the OFDM system. Simulation results indicate the validity of the proposed algorithm, which can work well even if the SNR is less than 0 dB.