期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Curious Identity on Multiple Sums over Fields with Applications 被引量:1
1
作者 Yongchao Xu Shaofang Hong 《Algebra Colloquium》 SCIE CSCD 2021年第2期295-308,共14页
Let F be a field,and let e,k be integers such that 1≤e≤|F\{0}|and k≥0.We show that for any subset{a1,……,ae}■F\{0},the curious identity∑(i1+……ie)∈Z^(e)≥0,i1+……+ie=k a_(1)^(i1)…a_(e)^(ie)=∑i=1 e a_(i)^(k+... Let F be a field,and let e,k be integers such that 1≤e≤|F\{0}|and k≥0.We show that for any subset{a1,……,ae}■F\{0},the curious identity∑(i1+……ie)∈Z^(e)≥0,i1+……+ie=k a_(1)^(i1)…a_(e)^(ie)=∑i=1 e a_(i)^(k+e-1)/∏i≠j=1 e(a_(i)-a_(j))holds with Z≥0 being the set of nonnegative integers.As an application,we prove that for any subset{a_(1)…,a_(e)}■F_(q)\{0}with F_(q)being the finite field of q elements and e,l being integers such that 2≤e≤q-1 and 0≤l≤e-2,∑(i_(1),…,i_(e))∈Z^(e)≥0,i_(1)+…i_(e)=q-e+l a_(1)^(i1)…a_(e)^(ie)=0 Using this identity and providing an extension of the principle of cross-classification that slightly generalizes the one obtained by Hong in 1996,we show that if r is an integer with 1≤r≤q-2,then for any subset{a_(1),…a_(r)}■F_(q)^(*)we have x^(q-1)-1/∏i=1 r(x-a_(i))-∑i=1 q-1-r(∑i_(1)+…+i_(r)=q-1-r-i^(a_(1)^(i1)…a_(r)^(ir)))x^(i).This implies#{x∈Fq*|∑i=0 q-1-4(∑_(i1)+…+ir=q-1-r-i^(a_(1)^(i1)…a_(r)^(ir)))x^(i)=0}=q-1-r. 展开更多
关键词 IDENTITY homogeneous polynomial zero polynomial field finite field decomposition generalized principle of cross-classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部