As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo...In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.展开更多
To meet the demands for different supply voltage levels on SOC required by digital modules like CPU core and analog modules,a novel dual-output charge pump is proposed. The charge pump can output a step-up and a step-...To meet the demands for different supply voltage levels on SOC required by digital modules like CPU core and analog modules,a novel dual-output charge pump is proposed. The charge pump can output a step-up and a step-down voltage simultaneously with a high driving capability. The multiple gain pair technique was introduced to enhance its efficiency. The proposed co-use technology for capacitors and switch arrays reduced its cost. The charge pump was designed and fabricated in a TSMC 0.35μm mixed-signal CMOS process. A group of analytical equations were derived to model its static characteristics. A state-space model was derived to describe its small-signal dynamic behavior. Analytical predictions were verified by Spectre simulation and testing. The consistency of simulated results as well as test results with analytical predictions demonstrated the high precision of the derived analytical equations and the developed models.展开更多
An improved charge-averaging charge pump and the corresponding circuit implementation are presented. The charge-averaging charge pump proposed by Koo is analyzed and a new scheme is proposed. This new scheme decreases...An improved charge-averaging charge pump and the corresponding circuit implementation are presented. The charge-averaging charge pump proposed by Koo is analyzed and a new scheme is proposed. This new scheme decreases power by 1/3 and eliminates the practical defects in the original. Spectre Verilog behavioral simulation results show that the proposed scheme can strongly reduce the energy of spurs. Circuit implementation of this new charge pump for a frequency synthesizer with a fractional division ratio of 1/3 is then presented and multi-level simulation is performed to validate its feasibility at the circuit level. The simulation results show this new scheme outputs a flat voltage curve in a locked state and can thus effectively suppress fraction spurs.展开更多
A novel AC to DC charge pump with high performance is presented. Due to the pMOS structure and threshold voltage canceling technology, the efficiency and the output voltage are greatly improved. Test results show that...A novel AC to DC charge pump with high performance is presented. Due to the pMOS structure and threshold voltage canceling technology, the efficiency and the output voltage are greatly improved. Test results show that the output voltage and power efficiency are improved by 125% and 104% respectively at 13.56MHz for a 1V sinusoidal input compared to the traditional MOS diodes structure.展开更多
In silicon-oxide-nitride-oxide-silicon (SONOS) memory and other charge trapping memories, the charge distribution after programming operation has great impact on the devic's characteristics,such as reading,programm...In silicon-oxide-nitride-oxide-silicon (SONOS) memory and other charge trapping memories, the charge distribution after programming operation has great impact on the devic's characteristics,such as reading,programming/erasing, and reliability. The lateral distribution of injected charges can be measured precisely using the charge pumping method. To improve the precision of the actual measurement, a combination of a constant low voltage method and a constant high voltage method is introduced during the charge pumping testing of the drain side and the source side, respectively. Finally, the electron distribution after channel hot electron programming in SONOS memory is obtained,which is close to the drain side with a width of about 50nm.展开更多
A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technolo...A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technology is used to make perfect current matching characteristics, and the two differential inverters are implanted to increase the speed of charge pump and decrease output spur due to theory of low voltage difference signal. Simulation results, with 1st silicon 0. 25μm 2. 5 V complementary metal-oxide-semiconductor (CMOS) mixed-signal process, show the good current matching characteristics regardless of the charge pump output voltages.展开更多
A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25μm 1P5M complementary metal oxide semiconductor...A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25μm 1P5M complementary metal oxide semiconductor (CMOS) process with a 2.5 V supply voltage, HSPICE simulation shows that even if the mismatch of phase/frequency detector (PFD) was beyond 10%, the charge pump could still keep nearly zero phase error, Incorporated fast lock circuit can shorten start-up time to below 300 ns.展开更多
A 3.5 times PLL clock frequency multiplier for low voltage different signal (LVDS) driver is presented. A novel adaptive charge pump can automatically switch the loop bandwidth and a voltage-controlled oscillator (...A 3.5 times PLL clock frequency multiplier for low voltage different signal (LVDS) driver is presented. A novel adaptive charge pump can automatically switch the loop bandwidth and a voltage-controlled oscillator (VCO) is designed with the aid of frequency ranges reuse technology. The circuit is implemented using 1st Silicon 0.25 μm mixed-signal complementary metal-oxide-semiconductor (CMOS) process. Simulation results show that the PLL clock frequency multiplier has very low phase noise and very short capture time .展开更多
A novel nanoscale watermill for the unidirectional transport of water molecules through a curved single-walled carbon nanotube(SWNT) is proposed and explored by molecular dynamics simulations. In this nanoscale syst...A novel nanoscale watermill for the unidirectional transport of water molecules through a curved single-walled carbon nanotube(SWNT) is proposed and explored by molecular dynamics simulations. In this nanoscale system, a revolving charge is introduced to drive a water chain confined inside the SWNT, the charge and the tube together serving as a nano waterwheel and nano engine. A resonance-like phenomenon is found, and the revolving frequency of the charge plays a key role in pumping the water chain. The water flux across the SWNT increases with respect to the revolving frequency of the external charge and it reaches its maximum when the frequency is 4 THz. Correspondingly, the number of hydrogen bonds in the water chain inside the SWNT decreases dramatically as the frequency increases from 4 THz to 25 THz. The mechanism behind the resonance phenomenon has been investigated systematically. Our findings are helpful for the design of nanoscale fluidic devices and energy converters.展开更多
ABSTRACT:The practical application of rotating triboelectric nanogenerators is often limited by the wear of high-friction surface materials and low surface charge density.In addition to the charge pump replenishment s...ABSTRACT:The practical application of rotating triboelectric nanogenerators is often limited by the wear of high-friction surface materials and low surface charge density.In addition to the charge pump replenishment strategy,suppressing charge decay is also crucial for increasing surface charge density.Here,we present a high performance rotary triboelectric nanogenerator(HPR-TENG)based on a coplanar charge pumping strategy and polyvinyl chloride(PVC)film.It has been demonstrated that applying PVC film to the surface of the storage electrode of the main TENG(M-TENG)significantly enhances the M-TENG’s output performance.Furthermore,the HPR-TENG with three layers of PVC film pasted achieved the best output performance,with a peak-topeak output voltage of 2828 V,a peak-to-peak output current of 327μA and a charge transfer of 0.81μC at 500 rpm.In addition,the output improvement effects of different materials are ranked.the TENG with 3 layers of PVC film pasted on it has a maximum output power of 748 mW at a load resistance of 4×10^(6)Ω.HPR-TENG’s output performance remains consistent after 100,000 cycles,which shows excellent stability.The excellent electrical performance of the HPR-TENG can be used as the energy supply for the tip high-voltage breakdown sensor system,which can achieve 14 breakdowns in 10 s.Due to its extraordinary electrical performance,HPRTENG can not only serve as an energy supply for cutting-edge high-voltage breakdown sensor systems,but also has the potential to serve as an energy supply for high-pressure sterilization,high-pressure vacuum and water electrolysis.展开更多
This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-conditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system....This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-conditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system.The void fraction in two-phase fluid region was calculated by Harms model.And based on distributed parameter model and Harms model,the refrigerant charge inventory in condenser and evaporator were calculated and analyzed in air-conditioning conditions and heat-pump conditions,respectively.The calculating results of different refrigerant mass between refrigeration and heating conditions indicate that the optimal refrigerant charge inventory in heat-pump conditions is lower than that in air-conditioning conditions.To avoid the decrease of COP due to the surplus refrigerant in heating conditions,we introduced the liquid reservoir control method and associate capillary control method.Both of them could increase the heating capacity of the air-source heat pump.The difference of optimal refrigerant charge inventory in air-conditioning and heat-pump system can be controlled by the liquid reservoir or the associate capillary.展开更多
We propose a workable scheme for generating a bulk valley pump current in a silicene-based device which consists of two pumping regions characterized by time-dependent strain and staggered potentials, respectively. In...We propose a workable scheme for generating a bulk valley pump current in a silicene-based device which consists of two pumping regions characterized by time-dependent strain and staggered potentials, respectively. In a one-dimension model, we show that a pure valley current can be generated, in which the two valley currents have the same magnitude but flow in opposite directions. Besides, the pumped valley current is quantized and maximized when the Fermi energy of the system locates in the bandgap opened by the two pumping potentials. Furthermore, the valley current can be finely controlled by tuning the device parameters. Our results are useful for the development of valleytronic devices based on two-dimensional materials.展开更多
We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons(ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different p...We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons(ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different pumping regions. It is found that pumping potentials with the symmetry Vp(x,y) = Vp(-x,y)can generate the largest valleypolarized current. The valley-polarized currents I13~L with the pumping potential symmetry Vp(x,y) =Vp(x,-y,) and I14~L with Vp(x,y) = Vp(-x,-y) of symmetric ZGNRs are much smaller than those of asymmetric ZGNRs. We also find I13~L and I14~L of symmetric ZGNRs decrease and increase with the increasing pumping amplitude, respectively. Moreover, the dephasing effect from the electron-phonon coupling within the Buttiker dephasing scheme is introduced. The valley-polarized current of the symmetric ZGNRs with Vp(x,y)= Vp(x,-y) increases with the increase of the dephasing strength while that with Vp(x,y) = Vp(-x,-y) decreases as the dephasing strength increases.展开更多
We report a theoretical study of pumped spin currents in a silicene-based pump device,where two time-dependent staggered potentials are introduced through the perpendicular electric fields and a magnetic insulator is ...We report a theoretical study of pumped spin currents in a silicene-based pump device,where two time-dependent staggered potentials are introduced through the perpendicular electric fields and a magnetic insulator is considered in between the two pumping potentials to magnetize the Dirac electrons.It is shown that giant spin currents can be generated in the pump device because the pumping can be optimal for each transport mode,the pumping current is quantized.By controlling the relevant parameters of the device,both pure spin currents and fully spin-polarized currents can be obtained.Our results may shed a new light on the generation of pumped spin currents in Dirac-electron systems.展开更多
In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study des...In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study describes an experimental method in order to investigate the effects of some significant parameters on heat pump performance.In this regard,a laboratory heat pump setup has been utilized to operate in different working conditions for achieving an appropriate estimation to find out effects of mentioned parameters such as refrigerant type and charge amount,compressor oil viscosity,compressor cooling fan,secondary fluids temperature and flow rate.Different refrigerants have been selected and used as circulating fluid in the installed heat pump.Although this work has been devoted to a detailed attempt to recognize the effects of various parameters on the coefficient of performance(COP) value,an appropriate method has been carried out to survey the obtained results by using economic analysis.It was revealed that one of the main parameters is refrigerant charge amount which has a notable effect on COP.The temperature of the heat source was also tested and the performance of the system increased by more than 11% by employing mentioned modifications and various operating conditions.In addition,by selecting a low viscosity compressor oil,the system performance increased by 18%.This improvement is more than 6% for the case that cooling fan is installed to cool the compressor element.展开更多
We report the temperature dependence of the spin pumping effect for Y_(3)Fe_(5)O_(12)(YIG,0.9μm)/NiO(tNiO)/W(6 nm)(tNiO=0 nm,1 nm,2 nm,and 10 nm)heterostructures.All samples exhibit a strong temperature-dependent inv...We report the temperature dependence of the spin pumping effect for Y_(3)Fe_(5)O_(12)(YIG,0.9μm)/NiO(tNiO)/W(6 nm)(tNiO=0 nm,1 nm,2 nm,and 10 nm)heterostructures.All samples exhibit a strong temperature-dependent inverse spin Hall effect(ISHE)signal I_(c)and sensitivity to the NiO layer thickness.We observe a dramatic decrease of I_(c)with inserting thin NiO layer between YIG and W layers indicating that the inserting of NiO layer significantly suppresses the spin transport from YIG to W.In contrast to the noticeable enhancement in YIG/NiO(tNiO≈1-2 nm)/Pt,the suppression of spin transport may be closely related to the specific interface-dependent spin scattering,spin memory loss,and spin conductance at the NiO/W interface.Besides,the I_(c)of YIG/Ni O/W exhibits a maximum near the TNof the AF NiO layer because the spins are transported dominantly by incoherent thermal magnons.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
基金supported by the National Natural Science Foundation of China under Grant 62274189the Natural Science Foundation of Guangdong Province,China,under Grant 2022A1515011054the Key Area R&D Program of Guangdong Province under Grant 2022B0701180001.
文摘In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.
文摘To meet the demands for different supply voltage levels on SOC required by digital modules like CPU core and analog modules,a novel dual-output charge pump is proposed. The charge pump can output a step-up and a step-down voltage simultaneously with a high driving capability. The multiple gain pair technique was introduced to enhance its efficiency. The proposed co-use technology for capacitors and switch arrays reduced its cost. The charge pump was designed and fabricated in a TSMC 0.35μm mixed-signal CMOS process. A group of analytical equations were derived to model its static characteristics. A state-space model was derived to describe its small-signal dynamic behavior. Analytical predictions were verified by Spectre simulation and testing. The consistency of simulated results as well as test results with analytical predictions demonstrated the high precision of the derived analytical equations and the developed models.
文摘An improved charge-averaging charge pump and the corresponding circuit implementation are presented. The charge-averaging charge pump proposed by Koo is analyzed and a new scheme is proposed. This new scheme decreases power by 1/3 and eliminates the practical defects in the original. Spectre Verilog behavioral simulation results show that the proposed scheme can strongly reduce the energy of spurs. Circuit implementation of this new charge pump for a frequency synthesizer with a fractional division ratio of 1/3 is then presented and multi-level simulation is performed to validate its feasibility at the circuit level. The simulation results show this new scheme outputs a flat voltage curve in a locked state and can thus effectively suppress fraction spurs.
文摘A novel AC to DC charge pump with high performance is presented. Due to the pMOS structure and threshold voltage canceling technology, the efficiency and the output voltage are greatly improved. Test results show that the output voltage and power efficiency are improved by 125% and 104% respectively at 13.56MHz for a 1V sinusoidal input compared to the traditional MOS diodes structure.
文摘In silicon-oxide-nitride-oxide-silicon (SONOS) memory and other charge trapping memories, the charge distribution after programming operation has great impact on the devic's characteristics,such as reading,programming/erasing, and reliability. The lateral distribution of injected charges can be measured precisely using the charge pumping method. To improve the precision of the actual measurement, a combination of a constant low voltage method and a constant high voltage method is introduced during the charge pumping testing of the drain side and the source side, respectively. Finally, the electron distribution after channel hot electron programming in SONOS memory is obtained,which is close to the drain side with a width of about 50nm.
文摘A novel structure for a charge pump circuit is proposed, in which the charge-pump (CP) current can adaptively regulated according to phase-locked loops (PLL) frequency synthesis demand. The current follow technology is used to make perfect current matching characteristics, and the two differential inverters are implanted to increase the speed of charge pump and decrease output spur due to theory of low voltage difference signal. Simulation results, with 1st silicon 0. 25μm 2. 5 V complementary metal-oxide-semiconductor (CMOS) mixed-signal process, show the good current matching characteristics regardless of the charge pump output voltages.
基金Supported by the National High Technology Re-search and Development Programof China (2004AA122310)
文摘A self-balanced charge pump (CP) with fast lock circuit to achieve nearly zero phase error is proposed and analyzed. The proposed CP is designed based on the SMIC 0.25μm 1P5M complementary metal oxide semiconductor (CMOS) process with a 2.5 V supply voltage, HSPICE simulation shows that even if the mismatch of phase/frequency detector (PFD) was beyond 10%, the charge pump could still keep nearly zero phase error, Incorporated fast lock circuit can shorten start-up time to below 300 ns.
基金Supported by the National Key Pre-Research Project of China (413010701-3)
文摘A 3.5 times PLL clock frequency multiplier for low voltage different signal (LVDS) driver is presented. A novel adaptive charge pump can automatically switch the loop bandwidth and a voltage-controlled oscillator (VCO) is designed with the aid of frequency ranges reuse technology. The circuit is implemented using 1st Silicon 0.25 μm mixed-signal complementary metal-oxide-semiconductor (CMOS) process. Simulation results show that the PLL clock frequency multiplier has very low phase noise and very short capture time .
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11005093 and 61274099)the Research Fund of Education Department of Zhejiang Province,China(Grant No.Y201223336)+2 种基金the Zhejiang Provincial Science and Technology Key Innovation Team,China(Grant No.2011R50012)the Key Laboratory of Zhejiang Province,China(Grant No.2013E10022)the Hong Kong Polytechnic University,China(Grant No.G-YL41)
文摘A novel nanoscale watermill for the unidirectional transport of water molecules through a curved single-walled carbon nanotube(SWNT) is proposed and explored by molecular dynamics simulations. In this nanoscale system, a revolving charge is introduced to drive a water chain confined inside the SWNT, the charge and the tube together serving as a nano waterwheel and nano engine. A resonance-like phenomenon is found, and the revolving frequency of the charge plays a key role in pumping the water chain. The water flux across the SWNT increases with respect to the revolving frequency of the external charge and it reaches its maximum when the frequency is 4 THz. Correspondingly, the number of hydrogen bonds in the water chain inside the SWNT decreases dramatically as the frequency increases from 4 THz to 25 THz. The mechanism behind the resonance phenomenon has been investigated systematically. Our findings are helpful for the design of nanoscale fluidic devices and energy converters.
基金support from the Natural Science Foundation for Young Scientists of Shanxi Province(No.202203021212127)the Innovative Research Group Project of National Natural Science Foundation of China(No.51821003).
文摘ABSTRACT:The practical application of rotating triboelectric nanogenerators is often limited by the wear of high-friction surface materials and low surface charge density.In addition to the charge pump replenishment strategy,suppressing charge decay is also crucial for increasing surface charge density.Here,we present a high performance rotary triboelectric nanogenerator(HPR-TENG)based on a coplanar charge pumping strategy and polyvinyl chloride(PVC)film.It has been demonstrated that applying PVC film to the surface of the storage electrode of the main TENG(M-TENG)significantly enhances the M-TENG’s output performance.Furthermore,the HPR-TENG with three layers of PVC film pasted achieved the best output performance,with a peak-topeak output voltage of 2828 V,a peak-to-peak output current of 327μA and a charge transfer of 0.81μC at 500 rpm.In addition,the output improvement effects of different materials are ranked.the TENG with 3 layers of PVC film pasted on it has a maximum output power of 748 mW at a load resistance of 4×10^(6)Ω.HPR-TENG’s output performance remains consistent after 100,000 cycles,which shows excellent stability.The excellent electrical performance of the HPR-TENG can be used as the energy supply for the tip high-voltage breakdown sensor system,which can achieve 14 breakdowns in 10 s.Due to its extraordinary electrical performance,HPRTENG can not only serve as an energy supply for cutting-edge high-voltage breakdown sensor systems,but also has the potential to serve as an energy supply for high-pressure sterilization,high-pressure vacuum and water electrolysis.
基金Supported by Hubei Provincial Natural Science Foundation(2008CDB363)
文摘This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-conditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system.The void fraction in two-phase fluid region was calculated by Harms model.And based on distributed parameter model and Harms model,the refrigerant charge inventory in condenser and evaporator were calculated and analyzed in air-conditioning conditions and heat-pump conditions,respectively.The calculating results of different refrigerant mass between refrigeration and heating conditions indicate that the optimal refrigerant charge inventory in heat-pump conditions is lower than that in air-conditioning conditions.To avoid the decrease of COP due to the surplus refrigerant in heating conditions,we introduced the liquid reservoir control method and associate capillary control method.Both of them could increase the heating capacity of the air-source heat pump.The difference of optimal refrigerant charge inventory in air-conditioning and heat-pump system can be controlled by the liquid reservoir or the associate capillary.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274059,11574045,and 11704165)
文摘We propose a workable scheme for generating a bulk valley pump current in a silicene-based device which consists of two pumping regions characterized by time-dependent strain and staggered potentials, respectively. In a one-dimension model, we show that a pure valley current can be generated, in which the two valley currents have the same magnitude but flow in opposite directions. Besides, the pumped valley current is quantized and maximized when the Fermi energy of the system locates in the bandgap opened by the two pumping potentials. Furthermore, the valley current can be finely controlled by tuning the device parameters. Our results are useful for the development of valleytronic devices based on two-dimensional materials.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704190,11874221,and 11504240)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20171030)
文摘We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons(ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different pumping regions. It is found that pumping potentials with the symmetry Vp(x,y) = Vp(-x,y)can generate the largest valleypolarized current. The valley-polarized currents I13~L with the pumping potential symmetry Vp(x,y) =Vp(x,-y,) and I14~L with Vp(x,y) = Vp(-x,-y) of symmetric ZGNRs are much smaller than those of asymmetric ZGNRs. We also find I13~L and I14~L of symmetric ZGNRs decrease and increase with the increasing pumping amplitude, respectively. Moreover, the dephasing effect from the electron-phonon coupling within the Buttiker dephasing scheme is introduced. The valley-polarized current of the symmetric ZGNRs with Vp(x,y)= Vp(x,-y) increases with the increase of the dephasing strength while that with Vp(x,y) = Vp(-x,-y) decreases as the dephasing strength increases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274059,11574045,and 11704165)
文摘We report a theoretical study of pumped spin currents in a silicene-based pump device,where two time-dependent staggered potentials are introduced through the perpendicular electric fields and a magnetic insulator is considered in between the two pumping potentials to magnetize the Dirac electrons.It is shown that giant spin currents can be generated in the pump device because the pumping can be optimal for each transport mode,the pumping current is quantized.By controlling the relevant parameters of the device,both pure spin currents and fully spin-polarized currents can be obtained.Our results may shed a new light on the generation of pumped spin currents in Dirac-electron systems.
文摘In the field of heat pumps,there are a number of parameters that affect the performance and efficiency of the apparatus,which have been the subject of studies by individual researchers in the literature.This study describes an experimental method in order to investigate the effects of some significant parameters on heat pump performance.In this regard,a laboratory heat pump setup has been utilized to operate in different working conditions for achieving an appropriate estimation to find out effects of mentioned parameters such as refrigerant type and charge amount,compressor oil viscosity,compressor cooling fan,secondary fluids temperature and flow rate.Different refrigerants have been selected and used as circulating fluid in the installed heat pump.Although this work has been devoted to a detailed attempt to recognize the effects of various parameters on the coefficient of performance(COP) value,an appropriate method has been carried out to survey the obtained results by using economic analysis.It was revealed that one of the main parameters is refrigerant charge amount which has a notable effect on COP.The temperature of the heat source was also tested and the performance of the system increased by more than 11% by employing mentioned modifications and various operating conditions.In addition,by selecting a low viscosity compressor oil,the system performance increased by 18%.This improvement is more than 6% for the case that cooling fan is installed to cool the compressor element.
基金support from the National Natural Science Foundation of China(Grant Nos.11774160,61427812,61805116,12004171,61774081,and 62171096)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20192006)+4 种基金the National Key Scientific Instrument and Equipment Development Project of China(Grant No.51827802)the Natural Science Foundation of Jiangsu Province of China(Grant Nos.BK20180056 and BK20200307)the Applied Basic Research Programs of the Science and Technology Commission Foundation of Jiangsu Province,China(Grant No.BK20200309)the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology,the Scientific Foundation of Nanjing University of Posts and Telecommunications(NUPTSF)(Grant No.NY220164)the State Key R&D Project of Guangdong,China(Grant No.2020B010174002)
文摘We report the temperature dependence of the spin pumping effect for Y_(3)Fe_(5)O_(12)(YIG,0.9μm)/NiO(tNiO)/W(6 nm)(tNiO=0 nm,1 nm,2 nm,and 10 nm)heterostructures.All samples exhibit a strong temperature-dependent inverse spin Hall effect(ISHE)signal I_(c)and sensitivity to the NiO layer thickness.We observe a dramatic decrease of I_(c)with inserting thin NiO layer between YIG and W layers indicating that the inserting of NiO layer significantly suppresses the spin transport from YIG to W.In contrast to the noticeable enhancement in YIG/NiO(tNiO≈1-2 nm)/Pt,the suppression of spin transport may be closely related to the specific interface-dependent spin scattering,spin memory loss,and spin conductance at the NiO/W interface.Besides,the I_(c)of YIG/Ni O/W exhibits a maximum near the TNof the AF NiO layer because the spins are transported dominantly by incoherent thermal magnons.