期刊文献+
共找到752篇文章
< 1 2 38 >
每页显示 20 50 100
Analysis and Research on Aerodynamic Characteristics of Quad Tilt Rotor Aircraft
1
作者 Jike Jia Xiaomei Ye +2 位作者 Guoyi He Qingjin Huang Zhile Hong 《Advances in Aerospace Science and Technology》 2024年第1期28-39,共12页
For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of... For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft. 展开更多
关键词 Quad Tilt Rotor Aircraft analysis of aerodynamic Characteristics CFD Method
下载PDF
AERODYNAMIC ANALYSIS OF HELICOPTER SHROUDED TAIL ROTOR BY MOMENTUM THEORY
2
作者 徐国华 王适存 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1998年第2期50-54,共5页
In this paper, in order to clarify the gains of the shroud in the shrouded tail rotor system, a thrust division factor q , which represents the ratio of the shroud thrust to the total thrust of the shrouded tail ro... In this paper, in order to clarify the gains of the shroud in the shrouded tail rotor system, a thrust division factor q , which represents the ratio of the shroud thrust to the total thrust of the shrouded tail rotor, is introduced. With the help of q , the slipstream theory for the static and axial flow states of the shrouded tail rotor are fully derived. Based on the sliptream theory, the variations of the thrust, power and disk area against q for different cases are emphatically analysed and the comparisons between a shrouded tail rotor and an isolated one are made. It is shown that, although the shroud can provide as much as 50% of the total thrust of shrouded tail rotor for the static state, the thrust gains of the shroud rapidly decrease for the axial flow state, which depends on the flow velocity ratio. 展开更多
关键词 helicopters tail rotors SHROUD aerodynamic analysis
下载PDF
Simulation on a Car Interior Aerodynamic Noise Control Based on Statistical Energy Analysis 被引量:5
3
作者 CHEN Xin WANG Dengfeng MA Zhengdong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期1016-1021,共6页
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interio... How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution. 展开更多
关键词 CAR interior aerodynamic noise CONTROL computational fluid dynamics statistical energy analysis
下载PDF
Aerodynamic Analysis and Simulation of Flapping Wing Aerial Vehicles on Hovering
4
作者 Liangliang Ren Hongbin Deng Qiang Shen 《Journal of Beijing Institute of Technology》 EI CAS 2019年第4期696-702,共7页
In order to design and verify control algorithms for flapping wing aerial vehicles(FWAVs),calculation models of the translational force,rotational force and virtual mass force were established with the basis on the mo... In order to design and verify control algorithms for flapping wing aerial vehicles(FWAVs),calculation models of the translational force,rotational force and virtual mass force were established with the basis on the modified quasi-steady aerodynamic theory and high lift mechanisms of insect flight.The simulation results show that the rotational force and virtual mass force can be ignored in the hovering FWAVs with simple harmonic motions in a cycle.The effects of the wing deformation on aerodynamic forces were investigated by regarding the maximum rotational angle of wingtip as a reference variable.The simulation results also show that the average lift coefficient increases and drag coefficient decreases with the increase of the maximum rotational angle of wingtip in the range of 0-90°. 展开更多
关键词 BIONICS flapping wing aerial vehicles(FWAVs) aerodynamic analysis flexible wing
下载PDF
Analysis on nonlinear wind-induced dynamic response of membrane roofs with aerodynamic effects
5
作者 李庆祥 孙炳楠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第4期475-481,共7页
Based on the characteristics of membrane structures and the air influence factors,this paper presented a method to simulate the air aerodynamic force effects including the added air mass,the acoustic radiation damping... Based on the characteristics of membrane structures and the air influence factors,this paper presented a method to simulate the air aerodynamic force effects including the added air mass,the acoustic radiation damping and the pneumatic stiffness.The infinite air was modeled using the acoustic fluid element of commercial FE software and the finite element membrane roof models were coupled with fluid models.A comparison between the results obtained by FE computation and those obtained by the vibration experiment for a cable-membrane verified the validity of the method.Furthermore,applying the method to a flat membrane roof structure and using its wind tunnel test results,the analysis of nonlinear wind-induced dynamic responses for such geometrically nonlinear roofs,including the roof-air coupled model was performed.The result shows that the air has large influence on vibrating membrane roofs according to results of comparing the nodal time-history displacements,accelerations and stress of the two different cases.Meantime,numerical studies show that the method developed can successfully solve the nonlinear wind-induced dynamic response of the membrane roof with aerodynamic effects. 展开更多
关键词 membrane roofs finite element method acoustic fluid element aerodynamic effects nonlinear dynamic analysis
下载PDF
Novel data-driven sparse polynomial chaos and analysis of covariance for aerodynamics of compressor cascades with dependent geometric uncertainties
6
作者 Zhengtao GUO Wuli CHU +1 位作者 Haoguang ZHANG Tianyuan JI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期89-108,共20页
Polynomial Chaos Expansion(PCE)has gained significant popularity among engineers across various engineering disciplines for uncertainty analysis.However,traditional PCE suffers from two major drawbacks.First,the ortho... Polynomial Chaos Expansion(PCE)has gained significant popularity among engineers across various engineering disciplines for uncertainty analysis.However,traditional PCE suffers from two major drawbacks.First,the orthogonality of polynomial basis functions holds only for independent input variables,limiting the model’s ability to propagate uncertainty in dependent variables.Second,PCE encounters the"curse of dimensionality"due to the high computational cost of training the model with numerous polynomial coefficients.In practical manufacturing,compressor blades are subject to machining precision limitations,leading to deviations from their ideal geometric shapes.These deviations require a large number of geometric parameters to describe,and exhibit significant correlations.To efficiently quantify the impact of high-dimensional dependent geometric deviations on the aerodynamic performance of compressor blades,this paper firstly introduces a novel approach called Data-driven Sparse PCE(DSPCE).The proposed method addresses the aforementioned challenges by employing a decorrelation algorithm to directly create multivariate basis functions,accommodating both independent and dependent random variables.Furthermore,the method utilizes an iterative Diffeomorphic Modulation under Observable Response Preserving Homotopy regression algorithm to solve the unknown coefficients,achieving model sparsity while maintaining fitting accuracy.Then,the study investigates the simultaneous effects of seven dependent geometric deviations on the aerodynamics of a high subsonic compressor cascade by using the DSPCE method proposed and sensitivity analysis of covariance.The joint distribution of the dependent geometric deviations is determined using Quantile-Quantile plots and normal copula functions based on finite measurement data.The results demonstrate that the correlations between geometric deviations significantly impact the variance of aerodynamic performance and the flow field.Therefore,it is crucial to consider these correlations for accurately assessing the aerodynamic uncertainty. 展开更多
关键词 Data-driven sparse polyno-mial chaos analysis of covariance Dependent uncertainty aerodynamic performance Compressor cascade
原文传递
Mechanism of unsteady aerodynamic heating with sudden change in surface temperature 被引量:2
7
作者 陈皓 鲍麟 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第2期163-174,共12页
The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is p... The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid. 展开更多
关键词 unsteady aerodynamic heating HYPERSONIC unsteady surface temperature approximate analysis numerical simulation
下载PDF
Unsteady aerodynamics modeling for flight dynamics application 被引量:13
8
作者 Qing Wang Kai-Feng He. +3 位作者 Wei-Qi Qian Tian-Jiao Zhang Yan-Qing Cheng Kai-Yuan Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期14-23,共10页
In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due... In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability 展开更多
关键词 Unsteady aerodynamics High angle of attack Mathematical model Flight dynamics - Bifurcation analysis Post-stall maneuver
下载PDF
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:4
9
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy C-means clustering kernel principal components analysis feature extraction aerodynamic modeling
下载PDF
Aerodynamic Characteristics of Isolated Loaded Tires with Different Tread Patterns: Experiment and Simulation 被引量:2
10
作者 Haichao Zhou Zhen Jiang +1 位作者 Guolin Wang Shupei Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第2期107-122,共16页
The current research of tire aerodynamics mainly focus on the isolated and simplified tread tire.Compared with the real complex pattern tire,the tread pattern structure and deformed profile of a loaded tire has a grea... The current research of tire aerodynamics mainly focus on the isolated and simplified tread tire.Compared with the real complex pattern tire,the tread pattern structure and deformed profile of a loaded tire has a greatly influence on tire aerodynamic drag.However,the mechanisms of the isolated loaded tires with different tread patterns effects on the aerodynamic drag are subjects worthy of discussion.The purpose of this study is to experimentally and compu-tationally investigate the aerodynamic characteristics of three tires 185/65 R14 with different patterns under loaded.A wind tunnel test model was first established using three-dimensional(3D)printing with a ratio of 1:1,and the pres-sure coefficients C_(p) of the three tires with different patterns are measured.The paper then conducted computational fluid dynamics(CFD)simulations for analyzing the pressure and flow characteristics.The accuracy of CFD simulation is verified by comparing the simulation results with the test results of pressure coefficients C_(p),and they are of good consistency.While,the general analysis of pressure coefficients C_(p) results of the three tires indicates high-pressure area on the windward surface,and occurrence of low-pressure area on the leeward surface,the pressure coefficients C_(p) of all three tires decreased firstly and then increased along in the air flow direction.The authors finally analyzed the effect of tread patterns on the flow field around the tire and revealed the differences between flow characteristics and aerodynamic drag.The results show that,angle of tire lateral groove has great effect on the flow field characteristics such that;the more the angle of lateral groove agrees with the air flow direction,the less the flow separation and flow vortices,and a minimum observable aerodynamic drag.The research provides a guidance for the design of low aerodynamic drag tires,and helps to illustrate the impact of tire aerodynamics on the car body in the future. 展开更多
关键词 Tire aerodynamic Wind tunnel test Numerical simulation Flow analysis
下载PDF
Aerodynamic improvement of a delta wing in combination with leading edge flaps 被引量:1
11
作者 Tadateru Ishide Mao Itazawa 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第6期357-361,共5页
Recently, various studies of micro air vehicle (MAV) and unmanned air vehicle (UAV) have been reported from wide range points of view. The aim of this study is to research the aerodynamic improvement of delta wing... Recently, various studies of micro air vehicle (MAV) and unmanned air vehicle (UAV) have been reported from wide range points of view. The aim of this study is to research the aerodynamic improvement of delta wing in low Reynold's number region to develop an applicative these air vehicle. As an attractive tool in delta wing, leading edge flap (LEF) is employed to directly modify the strength and structure of vortices originating from the separation point along the leading edge. Various configurations of LEF such as drooping apex flap and upward deflected flap are used in combination to enhance the aerodynamic characteristics in the delta wing. The fluid force measurement by six component toad ceil and particle image velocimetry (PIV) analysis are performed as the experimental method. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated. 展开更多
关键词 Delta wing Leading edge flap PIV analysis Leading edge vortex aerodynamic characteristics
下载PDF
CALCULATING METHOD OF AERODYNAMIC HEATING FOR HYPERSONIC AIRCRAFTS 被引量:1
12
作者 季卫栋 王江峰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第3期237-242,共6页
A new calculating method of aerodynamic heating for unsteady hypersonic aircrafts with complex configuration is presented.This method,which considers the effects of high temperature chemical non-equilibrium and the he... A new calculating method of aerodynamic heating for unsteady hypersonic aircrafts with complex configuration is presented.This method,which considers the effects of high temperature chemical non-equilibrium and the heat transfer process in thermal protection structure,is based on the combination of the inviscid outerflow solution and the engineering method,where the Euler solver provides the flow parameters on boundary layer edge for engineering method in aerodynamic heating calculation.A high efficient interpolation technique,which can be applied to the fast computation of longtime aerodynamic heating for hypersonic aircraft,is developed for flying trajectory.In this paper,three hypersonic test cases are calculated,and the heat flux and temperature distribution of thermo-protection system are shown.The numerical results show the high efficiency of the developed method and the validation of thermal characteristics analysis on hypersonic aerodynamic heating. 展开更多
关键词 hypersonic aircraft aerodynamic heating fluid-structure coupled analysis chemical non-equilibrium effects coupling of numerical and engineering methods
下载PDF
The influence of the wake of a flapping wing on the production of aerodynamic forces 被引量:9
13
作者 Jianghao Wu Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期411-418,共8页
The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and... The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing. 展开更多
关键词 Insect. Flapping. Unsteady aerodynamics.Wing/wake interaction. CFD analysis
下载PDF
Aerodynamic stability of cable-stayed-suspension hybrid bridges 被引量:1
14
作者 张新军 孙炳楠 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期869-874,共6页
Three-dimensional nonlinear aerodynamic stability analysis was applied to study the aerodynamic stability of a cable-stayed-suspension (CSS) hybrid bridge with main span of 1400 meters, and the effects of some design ... Three-dimensional nonlinear aerodynamic stability analysis was applied to study the aerodynamic stability of a cable-stayed-suspension (CSS) hybrid bridge with main span of 1400 meters, and the effects of some design parameters (such as the cable sag, length of suspension portion, cable plane arrangement, subsidiary piers in side spans, the deck form, etc.) on the aerodynamic stability of the bridge are analytically investigated. The key design parameters, which significantly influence the aerodynamic stability of CSS hybrid bridges, are pointed out, and based on the wind stability the favorable structural system of CSS hybrid bridges is discussed. 展开更多
关键词 Cable-stayed-suspension (CSS) hybrid bridge aerodynamic stability Parametric analysis
下载PDF
Experimental and Numerical Investigation on the External Aerodynamic Noise of High-Speed Train 被引量:1
15
作者 Shijie Jiang Song Yang +1 位作者 Bohong Zhang Bangchun Wen 《Sound & Vibration》 2019年第4期129-138,共10页
Aerodynamic noise is the dominant noise source of the high-speed train.It not only seriously affects the passenger comfort and people’s normal life along the railway line,but also may cause fatigue damage to the surr... Aerodynamic noise is the dominant noise source of the high-speed train.It not only seriously affects the passenger comfort and people’s normal life along the railway line,but also may cause fatigue damage to the surrounding equipment and buildings.This manuscript carried out the simulation and experimental study on the external aerodynamic noise of high-speed train,in order to increase the understanding of the noise and hence to be better able to control it.The on-line tests were performed to verify that it is reasonable to simplify the high-speed train model.The turbulent air flow model was then developed,and the external steady flow field was computed by Realizable k-εturbulence model.Based on the steady flow field,aerodynamic noise sources on the train surface and the external transient flow field were calculated by broadband acoustics source model and large eddy simulation(LES)respectively.The pressures on the train surface were obtained from the results of the transient model.Considering the transient flow field,the far-field aerodynamic noise generated by the high-speed train was finally obtained based on Lighthill-Curle theory.Through the comparison between simulations and on-line tests,it is shown that the numerical model gives reliable aerodynamic noise predictions.This research is significant to the study and control of the aerodynamic noise of high-speed train. 展开更多
关键词 High-speed train aerodynamic noise Lighthill-Curle theory simulated analysis on-line test
下载PDF
Uncertainty analysis of measured geometric variations in turbine blades and impact on aerodynamic performance 被引量:2
16
作者 Xiaojing WANG Pengcheng DU +2 位作者 Lichao YAO Zhengping ZOU Fei ZENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期140-160,共21页
Inevitable geometric variations significantly affect the performance of turbines or even that of entire engines;thus,it is necessary to determine their actual characteristics and accurately estimate their impact on pe... Inevitable geometric variations significantly affect the performance of turbines or even that of entire engines;thus,it is necessary to determine their actual characteristics and accurately estimate their impact on performance.In this study,based on 1781 measured profiles of a typical turbine blade,the statistical characteristics of the geometric variations and the uncertainty impact are analyzed,and some commonly used uncertainty modelling methods based on Principal-Component Analysis(PCA)are verified.The geometric variations are found to be evident,asymmetric,and non-uniform,and the non-normality of the random distributions is non-negligible.The performance is notably affected,which is manifested as an overall offset,a notable scattering,and significant deterioration in several extreme cases.Additionally,it is demonstrated that the PCA reconstruction model is effective in characterizing major uncertainty characteristics of the geometric variations and their impact on the performance with almost the first 10 PCA modes.Based on a reasonable profile error and mean geometric deviation,the Gaussian assumption and stochasticprocess-based model are also found to be effective in predicting the mean values and standard deviations of the performance variations.However,they fail to predict the probability of some extreme cases with high loss.Finally,a Chi-square-based correction model is proposed to compensate for this deficiency.The present work can provide a useful reference for uncertainty analysis of the impact of geometric variations,and the corresponding uncertainty design of turbine blades. 展开更多
关键词 aerodynamic performance Measured geometric variations Principal-component analysis Turbine blade Uncertainty analysis
原文传递
SIMULATION STUDY OF AERODYNAMIC FORCE FOR HIGH-SPEED MAGNETICALLY-LEVITATED TRAINS
17
作者 LI Renxian LIU Yingqing ZHAI Wanming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期226-232,共7页
Based on Reynolds average Navier-Storkes equations of viscous incompressible fluid and k-ε two equations turbulent model, the aerodynamic forces of high-speed magnetically-levitated (maglev) trains in transverse an... Based on Reynolds average Navier-Storkes equations of viscous incompressible fluid and k-ε two equations turbulent model, the aerodynamic forces of high-speed magnetically-levitated (maglev) trains in transverse and longitudinal wind are investigated by finite volume method. Near 80 calculation cases for 2D transverse wind fields and 20 cases for 3D longitudinal wind fields are analyzed. The aerodynamic side force, yawing, drag, lift and pitching moment for different types of maglev trains and a wheel/rail train are compared under the different wind speeds. The types of maglev train models for 2D transverse wind analysis included electromagnetic suspension (EMS) type train, electrodynamic suspension (EDS) type train, EMS type train with shelter wind wall in one side or two sides of guideway and the walls, which are in different height or/and different distances from train body. The situation of maglev train running on viaduct is also analyzed. For 3D longitudinal wind field analysis, the model with different sizes of air clearances beneath maglev train is examined for the different speeds. Calculation result shows that: ① Different transverse effects are shown in different types of maglev trains. ② The shelter wind wall can fairly decrease the transverse effect on the maglev trains. ③ When the shelter wall height is 2 m, there is minimum side force on the train. When the shelter wall height is 2.5 m, there is minimum yawing moment on the train. ④ When the distance between inside surfaces of the walls and center of guideway is 4.0 m, there is minimum transverse influence on the train. ⑤ The size of air clearance beneath train body has a small influence on aerodynamic drag of the train, but has a fairly large effect on aerodynamic lift and pitching moment of the train. ⑥ The calculating lift and pitching moment for maglev train models are minus values. 展开更多
关键词 aerodynamic force Magnetically-levitated (maglev) train Stability Numerical analysis
下载PDF
Aerodynamic stability of cable-stayed bridges under erection
18
作者 张新军 孙炳楠 项海帆 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第3期175-180,共6页
In this work, nonlinear multimode aerodynamic analysis of the Jingsha Bridge under erection over the Yangtze River is conducted, and the evolutions of structural dynamic characteristics and the aerodynamic stability w... In this work, nonlinear multimode aerodynamic analysis of the Jingsha Bridge under erection over the Yangtze River is conducted, and the evolutions of structural dynamic characteristics and the aerodynamic stability with erection are numerically generated. Instead of the simplified method, nonlinear multimode aerodynamic analysis is suggested to predict the aerodynamic stability of cable-stayed bridges under erection. The analysis showed that the aerodynamic stability maximizes at the relatively early stages, and decreases as the erection proceeds. The removal of the temporary piers in side spans and linking of the main girder to the anchor piers have important influence on the dynamic characteristics and aerodynamic stability of cable-stayed bridges under erection. 展开更多
关键词 Cable-stayed bridge Erection stage aerodynamic stability Nonlinear multimode aerodynamic analysis
下载PDF
Optimization for aerodynamic performance of double serpentine nozzles with spanwise offsets using Taguchi-based CFD analysis 被引量:1
19
作者 Xuyong ZHANG Yong SHAN +1 位作者 Jingzhou ZHANG Zhongcheng WU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第5期1-17,共17页
Serpentine nozzles are widely used in combat aircraft to realize strong stealth characteristics.Based on the layout characteristics within a confined space,a series of double serpentine nozzles with spanwise offsets a... Serpentine nozzles are widely used in combat aircraft to realize strong stealth characteristics.Based on the layout characteristics within a confined space,a series of double serpentine nozzles with spanwise offsets are established.Using computational fluid dynamics and Taguchi method,the influence mechanisms of the Distribution of Area(DA),Distributions of Centerline for the first and second‘S’sections in the Vertical direction(DCV1 and DCV2),and Distribution of Centerline in the Spanwise direction(DCS)are analyzed.The impact of these factors on the total pressure recovery coefficient can be ranked as DA>DCV2>DCS>DCV1,whereas their impacts on the discharge coefficient and axial thrust coefficient can be ranked as DCV2>DCS>DA>DCV1.Considering the statistical significance of these factors,a nozzle in which DA changes rapidly at the exit and DCV1,DCV2,and DCS change rapidly at the entrance gives the best aerodynamic performance.Compared to the worst configuration,the total pressure recovery coefficient,discharge coefficient,and axial thrust coefficient are improved by 1.6%,3.5%and 3.6%,respectively.DA influences the gas flow acceleration in the entire serpentine channel,resulting in different wall shear stress and friction losses.The various centerline distributions influence the gas flow acceleration effects and form complex wave structures in the constantarea extension section,resulting in different local and friction losses. 展开更多
关键词 aerodynamicS analysis of Variance(ANOVA) Computational Fluid Dynamics(CFD) Double serpentine nozzle Spanwise offset Taguchi methods
原文传递
The Spatial Sensitivity Analysis of Evapotranspiration using Penman-Monteith Method at Grid Scale
20
作者 Sivarajah Mylevaganam Chittaranjan Ray 《Journal of Geographic Information System》 2016年第1期121-136,共16页
The need to allocate the existing water in a sustainable manner, even with the projected population growth, has made to assess the consumptive use or evapotranspiration (ET), which determines the irrigation demand. As... The need to allocate the existing water in a sustainable manner, even with the projected population growth, has made to assess the consumptive use or evapotranspiration (ET), which determines the irrigation demand. As underscored in the literature, Penman-Monteith method which is a combination of aerodynamic and energy balance method is widely used and accepted as the method of estimation of ET. However, the application of Penman-Monteith relies on many climate parameters such as relative humidity, solar radiation, temperature, and wind speed. Therefore, there exists a need to determine the parameters that are most sensitive and correlated with dependent variable (i.e., ET), to strengthen the knowledge base. However, the sensitivity of ET using Penman-Monteith is oftentimes estimated using meteorological data from climate stations. Such estimation of sensitivity may vary spatially and thus there exists a need to estimate sensitivity of ET spatially. Thus, in this paper, based on One-AT-A-Time (OAT) method, a spatial sensitivity tool that can geographically encompass all the best available climate datasets to produce ET and its sensitivity at different spatial scales is developed. The spatial tool is developed as a Python toolbox in ArcGIS using Python, an open source programming language, and the ArcPy site-package of ArcGIS. The developed spatial tool is demonstrated using the meteorological data from Automated Weather Data Network in Nebraska in 2010. To summarize the outcome of the sensitivity analysis using OAT method, sensitivity indices are developed for each raster cell. The demonstration of the tool shows that, among the considered parameters, the computed ET using Penman-Monteith is highly sensitive to solar radiation followed by temperature for the state of Nebraska, as depicted by the sensitivity index. The computed sensitivity index of wind speed and the relative humidity are not that significant compared to the sensitivity index of solar radiation and temperature. 展开更多
关键词 EVAPOTRANSPIRATION Penman-Monteith Method aerodynamic Method Energy Balance Method PYTHON ArcPy ArcGIS Spatial Scale GEOPROCESSING Python Toolbox Sensitivity analysis One-AT-A-Time Sensitivity Index
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部