A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transitio...A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating.展开更多
This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve be...This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve better performance,auxiliary function-based double integral inequality is combined with extended Wirtinger's inequality and Jensen inequality to deal with the double integral and the triple integral in augmented Lyapunov-Krasovskii function(ALKF) and their weak infinitesimal generator respectively, the more accurate approximation bounds with a fewer variables are derived. As a result, less conservative stability criteria are proposed in this paper. Finally,numerical examples are given to show the effectiveness and the merits of the proposed method.展开更多
The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is inv...The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is investigated numerically in this paper.Based on quasi-steady assumption,the linear parameter varying (LPV) model of the morphing vehicle is derived from its nonlinear equation.Afterwards,by solving a set of linear matrix inequalities along with the bound of the morphing rate via slowly varying system theory,the designed controller which considers the transition stability during the morphing process is obtained.Finally,the transition process simulations of the morphing aircraft are performed via the changes simultaneously in both span and sweep,and the results demonstrate the effectiveness of the proposed controller.展开更多
Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling sta...Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling stability of WO_(3)-based aqueous ECBs is currently unsatisfactory due to the repeated phase transition during the redox process and the corrosion by acidic electrolytes.Herein,we present a titanium-tungsten oxide alloy(Ti-WO_(3))with controllable morphology and crystal phase synthesized by a facile hot injection method to overcome the challenges.In contrast to conventional monoclinic WO_(3),the Ti-WO_(3)nanorods can stably maintain their cubic crystal phase during the redox reaction in an acidic electrolyte,thus leading to dramatically enhanced response speed and cycling stability,Specifically,when working in a well-matched hybrid Al^(3+)/Zn^(2+)aqueous electrolyte,our phasetransition-free cubic Ti-WO_(3)exhibits an ultra-high cycling stability(>20000 cycles),fast response speed(3,95 s/4,65 s for bleaching/coloring),as well as excellent discharge areal capacity of 214.5 mA h m^(-2),We further fabricate a fully complementa ry aqueous electrochromic device,for the first time,using a Ti-WO_(3)/Prussian blue device architecture.Remarkably,the complementary ECB shows>10000 stable operation cycles,attesting to the feasibility of our Ti-WO_(3)for practical applications.Our work validates the significance of inhibiting the phase transitions of WO_(3)during the electrochromic process for realizing highly cyclable aqueous ECB,which can possibly provide a generalized design guidance for other high-quality metallic oxides for electrochemical applications.展开更多
Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs...Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications.展开更多
In the transition mode of quad tilt wing-unmanned aerial vehicle(QTW-UAV),the system stability of UAV will change with the tilt angle changes,which will cause serious head drop down.Meanwhile,with the complex air flow...In the transition mode of quad tilt wing-unmanned aerial vehicle(QTW-UAV),the system stability of UAV will change with the tilt angle changes,which will cause serious head drop down.Meanwhile,with the complex air flow and other disturbances,the system is prone to side bias,frying,stall and other kinetic stability problems,hence the system stability analysis has become an urgent problem to be solved.To solve the stability problem,we need the quantitative criteria of system stability and effective tool of stability analysis,and can improve the stability of the motion control by optimizing the structural parameters of the aircraft.Therefore,based on the design of the mechanical structure,the quantitative relationship between the structure parameters of the aerial vehicle and kinetic stability of the system transition mode is established by the Lyapunov exponent method.In this paper,the dynamic modeling of the position and attitude angle is carried out and the stability of the system is analyzed by Lyapunov exponent,the results show that changing the mechanical structure of the system can improve the flight stability for the system transition mode and lay a theoretical foundation for the system stability analysis.Compared with the Lyapunov direct method,this method can be construct easily,has a simple calculation process and so on.We improve the flight stability by optimizing the structure and the experiment confirms that expanding area can enhance flight stability within limits.展开更多
This study investigates the effects of multiphase internal flows that consider hydrate phase transitions on the parametric stability of marine risers.A numerical model of the multiphase internal flow that considers a ...This study investigates the effects of multiphase internal flows that consider hydrate phase transitions on the parametric stability of marine risers.A numerical model of the multiphase internal flow that considers a hydrate phase transition is established.The model first solves the flow parameters and subsequently obtains the natural frequencies of risers with different gas intake ratios.The stability charts of marine risers with different gas intake ratios are plotted by applying Floquet theory,and the effects of the gas intake ratio on the instability and vibration response of the risers are identified.The natural frequency increases with an increase in the gas intake ratio;thus,instability zones move to higher frequency ranges in the stability charts.As the increasing gas intake ratio reduces the damping effect of the Coriolis force,the critical amplitude of the heave in the unstable region decreases,especially when hydrodynamic damping is not considered.As a result,higher-order unstable regions are excited.When in an unstable region,the vibration response curve of a riser with a high gas intake ratio excited by parametric resonance diverges quickly due to parametric resonance.展开更多
Base on the arc phase and short-circuit phase and their relationship, the paper considers the changes of the extension of wire, the arc length, liquid bridge resistance and mass of liquid bridge, combines the improved...Base on the arc phase and short-circuit phase and their relationship, the paper considers the changes of the extension of wire, the arc length, liquid bridge resistance and mass of liquid bridge, combines the improved “mass-spring” model with the loop model of welding power system, puts forward the critical judgment condition of droplet transition, and establishes a more accurate dynamic model for describing the short-circuit transition process. The dynamic changes of short-circuit transfer frequency, welding current and voltage, contact droplet and residual droplet equivalent radius and droplet equivalent radius at different wire feeding speeds were calculated and analyzed, and compared with the experimental results. It shows that the fluctuation of droplet displacement, velocity and wire extension length at the optimal arc starting point is the smallest. The smaller the initial liquid bridge curvature radius is, the better the stability of short-circuit transfer is.展开更多
We show the multidimensional stability of subsonic phase transitions in a non-isothermal van der Waals fluid. Based on the existence result of planar waves in our previous work [1], a jump condition is posed on non-is...We show the multidimensional stability of subsonic phase transitions in a non-isothermal van der Waals fluid. Based on the existence result of planar waves in our previous work [1], a jump condition is posed on non-isothermal phase boundaries which makes the argument possible. Stability of planar waves both in one dimensional and multidi-mensional spaces are proved.展开更多
Oxygen redox is considered a new paradigm for increasing the practical capacity and energy density of the layered oxide cathodes for Na-ion batteries. However, severe local structural changes and phase transitions dur...Oxygen redox is considered a new paradigm for increasing the practical capacity and energy density of the layered oxide cathodes for Na-ion batteries. However, severe local structural changes and phase transitions during anionic redox reactions lead to poor electrochemical performance with sluggish kinetics.Here, we propose a synergy of Li-Cu cations in harnessing the full potential of oxygen redox, through Li displacement and suppressed phase transition in P3-type layered oxide cathode. P3-type Na_(0.7)[Li_(0.1)Cu_(0.2)Mn_(0.7)]O_(2) cathode delivers a large specific capacity of ~212 mA h g^(-1)at 15 mA g^(-1). The discharge capacity is maintained up to ~90% of the initial capacity after 100 cycles, with stable occurrence of the oxygen redox in the high-voltage region. Through advanced experimental analyses and first-principles calculations, it is confirmed that a stepwise redox reaction based on Cu and O ions occurs for the charge-compensation mechanism upon charging. Based on a concrete understanding of the reaction mechanism, the Li displacement by the synergy of Li-Cu cations plays a crucial role in suppressing the structural change of the P3-type layered material under the oxygen redox reaction, and it is expected to be an effective strategy for stabilizing the oxygen redox in the layered oxides of Na-ion batteries.展开更多
Two new coordination polymers,[Co(BIPA)(bpp)](1) and [Zn(BIPA)(bpp)(H2O)](2)(H2BIPA = 5-bromoisophthalic acid,bpp = 1,3-di(4-pyridyl)propane) have been synthesized via hydrothermal reactions.The two ...Two new coordination polymers,[Co(BIPA)(bpp)](1) and [Zn(BIPA)(bpp)(H2O)](2)(H2BIPA = 5-bromoisophthalic acid,bpp = 1,3-di(4-pyridyl)propane) have been synthesized via hydrothermal reactions.The two compounds were characterized by elemental analysis,IR spectra,TG analysis and single-crystal X-ray determination.Compound 1 crystallizes in triclinic,space group P1 with a = 9.0316(13),b = 10.1179(14),c = 11.8884(17) ,α = 68.022(2),β = 84.749(2),γ = 77.791(2)°,V = 984.5(2) 3,Z = 2,C21H17BrN2O4Co,Mr = 500.21,Dc = 1.687 g.cm-3,μ = 2.932 mm-1,S = 0.981,F(000) = 502,R = 0.0440 and wR = 0.1357 for 3773 observed reflections with I 2σ(I).Compound 2 crystallizes in the monoclinic system,space group P21/c with a = 7.8466(10),b = 27.483(4),c = 9.6583(13) ,β = 96.663(3)°,V = 2068.8(5) 3,Z = 4,C21H19BrN2O5Zn,Mr = 524.66,Dc = 1.685 g.cm-3,μ = 3.155 mm-1,S = 0.969,F(000) = 1056,R = 0.0441 and wR = 0.0517 for 4058 observed reflections with I 2σ(I).The two compounds are constructed from the BIPA2-and bpp ligands but they exhibit different kinds of one-dimensional chain structures.In 1,the chains are composed of the Co(Ⅱ) ions and BIPA2-ligands,and the chains are further extended into a 2D framework structure by π...π interactions of the benzene rings from the BIPA2-ligands between the adjacent chains.In 2,the chains are made up of Zn(Ⅱ) ions and BIPA2-ligands through another fashion,and the chains are further linked via hydrogen bonding interactions to yield a two-dimensional supramolecular layer structure.Furthermore,the bpp ligand features two kinds of different coordination modes in the two compounds.展开更多
In a previous paper, a method has been developed to study the stability characteristics of laminar boundary layers over compliant walls. In this paper, the effect of double layered compliant wall and Kramer type compl...In a previous paper, a method has been developed to study the stability characteristics of laminar boundary layers over compliant walls. In this paper, the effect of double layered compliant wall and Kramer type compliant wall on delaying the transition is investigated, and it is shown that there does exist the possibility to de- lay the transition by applying such compliant walls.展开更多
A new method for computing laminar-turbulent transition and turbulence in compressible boundary layers is proposed. It is especially useful for computation of laminar-turbulent transition and turbulence starting from ...A new method for computing laminar-turbulent transition and turbulence in compressible boundary layers is proposed. It is especially useful for computation of laminar-turbulent transition and turbulence starting from small-amplitude disturbances. The laminar stage, up to the beginning of the breakdown in laminar-turbulent transition, is computed by parabolized stability equations (PSE). The direct numerical simulation (DNS) method is used to compute the transition process and turbulent flow, for which the inflow condition is provided by using the disturbances obtained by PSE method up to that stage. In the two test cases including a subsonic and a supersonic boundary layer, the transition locations and the turbulent flow obtained with this method agree well with those obtained by using only DNS method for the whole process. The computational cost of the proposed method is much less than using only DNS method.展开更多
Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed. Then, two groups of finite amplitude T-S wave disturbances were introduced at the entrance of th...Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed. Then, two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field, and the spatial mode transition process was studied by direct numerical simulation (DNS) method. The mechanism of the transition process was analyzed. It was found that the change of the stability characteristics of the mean flow profile was the key issue. Furthermore, the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.展开更多
A new idea of using the parabolized stability equation (PSE) method to predict laminar-turbulent transition is proposed. It is tested in the prediction of the location of transition for compressible boundary layers ...A new idea of using the parabolized stability equation (PSE) method to predict laminar-turbulent transition is proposed. It is tested in the prediction of the location of transition for compressible boundary layers on fiat plates, and the results are compared with those obtained by direct numerical simulations (DNS). The agreement is satisfactory, and the reason for this is that the PSE method faithfully reproduces the mechanism leading to the breakdown process in laminar-turbulent transition, i.e., the modification of mean flow profile leads to a remarkable change in its stability characteristics.展开更多
The rapid rise in the power conversion efficiency(PCE)of CsPbBr_(2)I-based perovskite solar cells(PSCs),from 4.7%in 2016 to 11.08%in 2020,render it a promising material for use in photovoltaic devices.However,the phas...The rapid rise in the power conversion efficiency(PCE)of CsPbBr_(2)I-based perovskite solar cells(PSCs),from 4.7%in 2016 to 11.08%in 2020,render it a promising material for use in photovoltaic devices.However,the phase stability and current hysteresis caused by photo-induced phase segregation in CsPbBr_(2)I represent major obstacles to further improvements in the PCE for such devices.In this review,we describe the basic structure and optical properties of CsPbBr_(2)I,and systematically elaborate on the mechanism of the phase transition.We then discuss the strategies in progress to suppress phase transition in CsPbBr_(2)I,and their potential application in the photovoltaic field.Finally,challenges and application prospects for CsPbBr2I PSCs are summarized in the final section of this article.展开更多
Over the past decade,the first-principles-aided thermodynamic models have become standard theoretical tools in research on structural stability and evolution of transition-metal heterogeneous catalysts under reaction ...Over the past decade,the first-principles-aided thermodynamic models have become standard theoretical tools in research on structural stability and evolution of transition-metal heterogeneous catalysts under reaction environment.Advances in first-principles-aided thermodynamic models mean it is now possible to enable the operando computational modeling,which provides a deep insight into mechanism behind structural stability and evolution,and paves the way for high-through screening for promising transition-metal heterogeneous catalysts.Here,we briefly review the framework and foundation of first-principles-aided thermodynamic models and highlight its contribution to stability analysis on catalysts and identification of reaction-induced structural evolution of catalyst under reaction environment.The present review is helpful for understanding the ongoing developments of first-principles-aided thermodynamic models,which can be employed to screen high-stability catalysts and predict their structural reconstruction in future rational catalyst design.展开更多
Searching anodes with excellent electrochemical performance has been in great demand for rechargeable metal ion batteries. In this contribution, Fe/Co co-doped Ni S with N-based carbon(Fe Co-NiS@NC) derived from trime...Searching anodes with excellent electrochemical performance has been in great demand for rechargeable metal ion batteries. In this contribution, Fe/Co co-doped Ni S with N-based carbon(Fe Co-NiS@NC) derived from trimetallic Prussian blue analogue is designed and synthesized. The composition can be easily adjusted and modulated by multi-metals. In addition, the well-designed carbon nanocubes effectively promote electronic conductivity and buffer the volume change upon charge and discharge cycling, resulting in good capacity and long-term cycle life for both lithium-ion batteries and sodium-ion batteries, with capacities of 1018 m Ah g^(-1)(vs. Li/Li^(+)) and 454 m Ah g^(-1)(vs. Na/Na^(+)), respectively, after 100 cycles.Kinetics studies indicate that the electrochemical behaviors are manipulated by both diffusion and pseudocapacitance processes. These strategies would open new opportunities and potention for novel energy storage.展开更多
Flow transition from laminar to turbulent is prerequisite to decide whereabouts to apply surface flow control techniques. This appears missing in a number of works in which the control effects were merely investigated...Flow transition from laminar to turbulent is prerequisite to decide whereabouts to apply surface flow control techniques. This appears missing in a number of works in which the control effects were merely investigated without getting insight into alteration of transition position. The aim of this study is to capture the correct position of transition over NACA0012 aerofoil at different angles of attack. Firstly, an implicit, time marching, high resolution total variation diminishing (TVD) scheme was developed to solve the governing Navier-Stokes equations for compressible fluid flows around aerofoil sections to obtain velocity profiles around the aerofoil surfaces. Secondly, the linear instability solver based on the Orr-Sommerfeld equations and the eg methods were developed to calculate the onset of transition over the aerofoil surfaces. For the low subsonic Mach number of 0.16, the accuracy of the compressible solutions was assessed by some available experimental results of low speed incompressible flows. In all cases, transition positions were accurately predicted which shows applicability and superiority of the present work to be extended for higher Mach number compressible flows. Here, transition prediction methodology is described and the results of this analysis without active flow control or separation are presented.展开更多
This study presents numerical methods for solving the minimum energies that satisfy typical optimal requirements in the transition between two dynamic systems where each system is governed by a different kind of weakl...This study presents numerical methods for solving the minimum energies that satisfy typical optimal requirements in the transition between two dynamic systems where each system is governed by a different kind of weakly singular integro-differential equation. The class of weakly singular integro-differential equations originates from mathematical models in aeroelasticity. The proposed numerical methods are based on earlier reported approximation schemes for the equations of the first kind and the second kind. The main result of this study is the development of numerical techniques for determining the stability between two dynamic systems in the minimum energy sense.展开更多
基金the China National Nature Science Foundation(Grant No.12102404)。
文摘A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating.
基金supported by the National Natural Science Foundation of China(61403001,61572032)in part by the Natural Science Foundation of Anhui Province of China(1508085QF136)in part by the Natural Science Foundation of Universities of Anhui Province of China(KJ2016A058)
文摘This paper focuses on the delay-dependent stability for a kind of Markovian jump time-delay systems(MJTDSs),whose transition rates are incompletely known. In order to reduce the computational complexity and achieve better performance,auxiliary function-based double integral inequality is combined with extended Wirtinger's inequality and Jensen inequality to deal with the double integral and the triple integral in augmented Lyapunov-Krasovskii function(ALKF) and their weak infinitesimal generator respectively, the more accurate approximation bounds with a fewer variables are derived. As a result, less conservative stability criteria are proposed in this paper. Finally,numerical examples are given to show the effectiveness and the merits of the proposed method.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2662018QD029)the National Natural Science Foundation of China(Nos.91016022,61503354)in part by the Priority Academic Program of Jiangsu Higher Education Institutions
文摘The large-scale morphing aircraft can change its shape dramatically to perform high flight performance.To ensure the transient stability of aircraft in the morphing process,a novel gain-scheduled control method is investigated numerically in this paper.Based on quasi-steady assumption,the linear parameter varying (LPV) model of the morphing vehicle is derived from its nonlinear equation.Afterwards,by solving a set of linear matrix inequalities along with the bound of the morphing rate via slowly varying system theory,the designed controller which considers the transition stability during the morphing process is obtained.Finally,the transition process simulations of the morphing aircraft are performed via the changes simultaneously in both span and sweep,and the results demonstrate the effectiveness of the proposed controller.
基金funded by the Science and Technology Development Fund,Macao SAR(File no.0052/2021/AGJ,0027/2023/AMJ,0083/2023/ITP2 and 0107/2023/AFJ)the Multi-Year Research Grants(MYRG2022-00063-IAPME,MYRG-GRG2023-00230-IAPME-UMDF)from the University of Macao+1 种基金the Guangdong Science and Technology Plan(2022A0505020022)the Major Science and Technology Research and Development Project of Jiangxi Province(20223AAE01003)。
文摘Aqueous electrochromic battery(ECB)has shown intense potential for achieving energy storage and saving simultaneously.While tungsten oxide(WO_(3))is the most promising EC material for commercialization,the cycling stability of WO_(3)-based aqueous ECBs is currently unsatisfactory due to the repeated phase transition during the redox process and the corrosion by acidic electrolytes.Herein,we present a titanium-tungsten oxide alloy(Ti-WO_(3))with controllable morphology and crystal phase synthesized by a facile hot injection method to overcome the challenges.In contrast to conventional monoclinic WO_(3),the Ti-WO_(3)nanorods can stably maintain their cubic crystal phase during the redox reaction in an acidic electrolyte,thus leading to dramatically enhanced response speed and cycling stability,Specifically,when working in a well-matched hybrid Al^(3+)/Zn^(2+)aqueous electrolyte,our phasetransition-free cubic Ti-WO_(3)exhibits an ultra-high cycling stability(>20000 cycles),fast response speed(3,95 s/4,65 s for bleaching/coloring),as well as excellent discharge areal capacity of 214.5 mA h m^(-2),We further fabricate a fully complementa ry aqueous electrochromic device,for the first time,using a Ti-WO_(3)/Prussian blue device architecture.Remarkably,the complementary ECB shows>10000 stable operation cycles,attesting to the feasibility of our Ti-WO_(3)for practical applications.Our work validates the significance of inhibiting the phase transitions of WO_(3)during the electrochromic process for realizing highly cyclable aqueous ECB,which can possibly provide a generalized design guidance for other high-quality metallic oxides for electrochemical applications.
基金supported by the National Key Research and Development Program of China(2021YFB3802600)the National Natural Science Foundation of China(22278396,22378392,22178344)+1 种基金the Youth Innovation Promotion Association CAS(Y2021022)the Open Research Fund of State Key Laboratory of Mesoscience and Engineering(MESO-23-D17)。
文摘Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications.
基金This research is supported financially by Natural Science Foundation of China(Grant No.51575283,No.51405243).
文摘In the transition mode of quad tilt wing-unmanned aerial vehicle(QTW-UAV),the system stability of UAV will change with the tilt angle changes,which will cause serious head drop down.Meanwhile,with the complex air flow and other disturbances,the system is prone to side bias,frying,stall and other kinetic stability problems,hence the system stability analysis has become an urgent problem to be solved.To solve the stability problem,we need the quantitative criteria of system stability and effective tool of stability analysis,and can improve the stability of the motion control by optimizing the structural parameters of the aircraft.Therefore,based on the design of the mechanical structure,the quantitative relationship between the structure parameters of the aerial vehicle and kinetic stability of the system transition mode is established by the Lyapunov exponent method.In this paper,the dynamic modeling of the position and attitude angle is carried out and the stability of the system is analyzed by Lyapunov exponent,the results show that changing the mechanical structure of the system can improve the flight stability for the system transition mode and lay a theoretical foundation for the system stability analysis.Compared with the Lyapunov direct method,this method can be construct easily,has a simple calculation process and so on.We improve the flight stability by optimizing the structure and the experiment confirms that expanding area can enhance flight stability within limits.
基金funded by the National Natural Sci-ence Foundation of China(No.U2006226)the National Key Research and Development Program of China(No.2016YFC0303800)the National Natural Science Foundation of China(No.51579245)。
文摘This study investigates the effects of multiphase internal flows that consider hydrate phase transitions on the parametric stability of marine risers.A numerical model of the multiphase internal flow that considers a hydrate phase transition is established.The model first solves the flow parameters and subsequently obtains the natural frequencies of risers with different gas intake ratios.The stability charts of marine risers with different gas intake ratios are plotted by applying Floquet theory,and the effects of the gas intake ratio on the instability and vibration response of the risers are identified.The natural frequency increases with an increase in the gas intake ratio;thus,instability zones move to higher frequency ranges in the stability charts.As the increasing gas intake ratio reduces the damping effect of the Coriolis force,the critical amplitude of the heave in the unstable region decreases,especially when hydrodynamic damping is not considered.As a result,higher-order unstable regions are excited.When in an unstable region,the vibration response curve of a riser with a high gas intake ratio excited by parametric resonance diverges quickly due to parametric resonance.
基金the Natural Science Foundation Project of Guizhou Province([2019]1069)Guizhou Province Cultivation Project([2017]5788-42)+1 种基金Guizhou Province Science and Technology Support Plan General Project([2022]051)Guizhou University Talent Introduction Plan((2017)28).
文摘Base on the arc phase and short-circuit phase and their relationship, the paper considers the changes of the extension of wire, the arc length, liquid bridge resistance and mass of liquid bridge, combines the improved “mass-spring” model with the loop model of welding power system, puts forward the critical judgment condition of droplet transition, and establishes a more accurate dynamic model for describing the short-circuit transition process. The dynamic changes of short-circuit transfer frequency, welding current and voltage, contact droplet and residual droplet equivalent radius and droplet equivalent radius at different wire feeding speeds were calculated and analyzed, and compared with the experimental results. It shows that the fluctuation of droplet displacement, velocity and wire extension length at the optimal arc starting point is the smallest. The smaller the initial liquid bridge curvature radius is, the better the stability of short-circuit transfer is.
文摘We show the multidimensional stability of subsonic phase transitions in a non-isothermal van der Waals fluid. Based on the existence result of planar waves in our previous work [1], a jump condition is posed on non-isothermal phase boundaries which makes the argument possible. Stability of planar waves both in one dimensional and multidi-mensional spaces are proved.
基金supported by the National Research Foundation of Korea grant funded by the Korea government (NRF2021R1A2C1014280)the Fundamental Research Program of the Korea Institute of Material Science (PNK9370)。
文摘Oxygen redox is considered a new paradigm for increasing the practical capacity and energy density of the layered oxide cathodes for Na-ion batteries. However, severe local structural changes and phase transitions during anionic redox reactions lead to poor electrochemical performance with sluggish kinetics.Here, we propose a synergy of Li-Cu cations in harnessing the full potential of oxygen redox, through Li displacement and suppressed phase transition in P3-type layered oxide cathode. P3-type Na_(0.7)[Li_(0.1)Cu_(0.2)Mn_(0.7)]O_(2) cathode delivers a large specific capacity of ~212 mA h g^(-1)at 15 mA g^(-1). The discharge capacity is maintained up to ~90% of the initial capacity after 100 cycles, with stable occurrence of the oxygen redox in the high-voltage region. Through advanced experimental analyses and first-principles calculations, it is confirmed that a stepwise redox reaction based on Cu and O ions occurs for the charge-compensation mechanism upon charging. Based on a concrete understanding of the reaction mechanism, the Li displacement by the synergy of Li-Cu cations plays a crucial role in suppressing the structural change of the P3-type layered material under the oxygen redox reaction, and it is expected to be an effective strategy for stabilizing the oxygen redox in the layered oxides of Na-ion batteries.
基金Supported by NNSFC (21071024)the Chizhou University (2010RC005)the Materials Key Subject of Chizhou University (2011XK04)
文摘Two new coordination polymers,[Co(BIPA)(bpp)](1) and [Zn(BIPA)(bpp)(H2O)](2)(H2BIPA = 5-bromoisophthalic acid,bpp = 1,3-di(4-pyridyl)propane) have been synthesized via hydrothermal reactions.The two compounds were characterized by elemental analysis,IR spectra,TG analysis and single-crystal X-ray determination.Compound 1 crystallizes in triclinic,space group P1 with a = 9.0316(13),b = 10.1179(14),c = 11.8884(17) ,α = 68.022(2),β = 84.749(2),γ = 77.791(2)°,V = 984.5(2) 3,Z = 2,C21H17BrN2O4Co,Mr = 500.21,Dc = 1.687 g.cm-3,μ = 2.932 mm-1,S = 0.981,F(000) = 502,R = 0.0440 and wR = 0.1357 for 3773 observed reflections with I 2σ(I).Compound 2 crystallizes in the monoclinic system,space group P21/c with a = 7.8466(10),b = 27.483(4),c = 9.6583(13) ,β = 96.663(3)°,V = 2068.8(5) 3,Z = 4,C21H19BrN2O5Zn,Mr = 524.66,Dc = 1.685 g.cm-3,μ = 3.155 mm-1,S = 0.969,F(000) = 1056,R = 0.0441 and wR = 0.0517 for 4058 observed reflections with I 2σ(I).The two compounds are constructed from the BIPA2-and bpp ligands but they exhibit different kinds of one-dimensional chain structures.In 1,the chains are composed of the Co(Ⅱ) ions and BIPA2-ligands,and the chains are further extended into a 2D framework structure by π...π interactions of the benzene rings from the BIPA2-ligands between the adjacent chains.In 2,the chains are made up of Zn(Ⅱ) ions and BIPA2-ligands through another fashion,and the chains are further linked via hydrogen bonding interactions to yield a two-dimensional supramolecular layer structure.Furthermore,the bpp ligand features two kinds of different coordination modes in the two compounds.
基金The project supported by the National Natural Science Foundation of China
文摘In a previous paper, a method has been developed to study the stability characteristics of laminar boundary layers over compliant walls. In this paper, the effect of double layered compliant wall and Kramer type compliant wall on delaying the transition is investigated, and it is shown that there does exist the possibility to de- lay the transition by applying such compliant walls.
基金supported by the National Natural Science Foundation of China (Nos. 10632050 and90716007)the Foundation for the Author of National Excellent Doctoral Dissertation of China(FANEDD) (No. 200328)
文摘A new method for computing laminar-turbulent transition and turbulence in compressible boundary layers is proposed. It is especially useful for computation of laminar-turbulent transition and turbulence starting from small-amplitude disturbances. The laminar stage, up to the beginning of the breakdown in laminar-turbulent transition, is computed by parabolized stability equations (PSE). The direct numerical simulation (DNS) method is used to compute the transition process and turbulent flow, for which the inflow condition is provided by using the disturbances obtained by PSE method up to that stage. In the two test cases including a subsonic and a supersonic boundary layer, the transition locations and the turbulent flow obtained with this method agree well with those obtained by using only DNS method for the whole process. The computational cost of the proposed method is much less than using only DNS method.
基金Project supported by the National Natural Science Foundation of China (Key Program) (No.10632050)
文摘Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed. Then, two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field, and the spatial mode transition process was studied by direct numerical simulation (DNS) method. The mechanism of the transition process was analyzed. It was found that the change of the stability characteristics of the mean flow profile was the key issue. Furthermore, the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.
基金Project supported by the National Natural Science Foundation of China (Nos.10632050,90716007)the Science Foundation of LIU Hui Center of Applied Mathematics of Nankai University and Tianjin university.
文摘A new idea of using the parabolized stability equation (PSE) method to predict laminar-turbulent transition is proposed. It is tested in the prediction of the location of transition for compressible boundary layers on fiat plates, and the results are compared with those obtained by direct numerical simulations (DNS). The agreement is satisfactory, and the reason for this is that the PSE method faithfully reproduces the mechanism leading to the breakdown process in laminar-turbulent transition, i.e., the modification of mean flow profile leads to a remarkable change in its stability characteristics.
基金the National Natural Science Foundation of China(52073131,51902148,61704099,61874166,U1832149,51801088 and 51802024)the Natural Science Foundation of Gansu Province(20JR5RA227,20JR5RA217,20JR5RA278)the Fundamental Research Funds for the Central Universities(lzujbky-2020-61,lzujbky-2019-88 and lzujbky-2020-kb06).
文摘The rapid rise in the power conversion efficiency(PCE)of CsPbBr_(2)I-based perovskite solar cells(PSCs),from 4.7%in 2016 to 11.08%in 2020,render it a promising material for use in photovoltaic devices.However,the phase stability and current hysteresis caused by photo-induced phase segregation in CsPbBr_(2)I represent major obstacles to further improvements in the PCE for such devices.In this review,we describe the basic structure and optical properties of CsPbBr_(2)I,and systematically elaborate on the mechanism of the phase transition.We then discuss the strategies in progress to suppress phase transition in CsPbBr_(2)I,and their potential application in the photovoltaic field.Finally,challenges and application prospects for CsPbBr2I PSCs are summarized in the final section of this article.
基金supported by the National Natural Science Foundation of China(Grant Nos.21822801)China Postdoctoral Science Foundation(2019TQ0021)the Fundamental Research Funds for the Central Universities(XK18021 and XK180301)。
文摘Over the past decade,the first-principles-aided thermodynamic models have become standard theoretical tools in research on structural stability and evolution of transition-metal heterogeneous catalysts under reaction environment.Advances in first-principles-aided thermodynamic models mean it is now possible to enable the operando computational modeling,which provides a deep insight into mechanism behind structural stability and evolution,and paves the way for high-through screening for promising transition-metal heterogeneous catalysts.Here,we briefly review the framework and foundation of first-principles-aided thermodynamic models and highlight its contribution to stability analysis on catalysts and identification of reaction-induced structural evolution of catalyst under reaction environment.The present review is helpful for understanding the ongoing developments of first-principles-aided thermodynamic models,which can be employed to screen high-stability catalysts and predict their structural reconstruction in future rational catalyst design.
基金supported by the National Natural Science Foundation of China(Grant Nos.21974007 and 22090043)。
文摘Searching anodes with excellent electrochemical performance has been in great demand for rechargeable metal ion batteries. In this contribution, Fe/Co co-doped Ni S with N-based carbon(Fe Co-NiS@NC) derived from trimetallic Prussian blue analogue is designed and synthesized. The composition can be easily adjusted and modulated by multi-metals. In addition, the well-designed carbon nanocubes effectively promote electronic conductivity and buffer the volume change upon charge and discharge cycling, resulting in good capacity and long-term cycle life for both lithium-ion batteries and sodium-ion batteries, with capacities of 1018 m Ah g^(-1)(vs. Li/Li^(+)) and 454 m Ah g^(-1)(vs. Na/Na^(+)), respectively, after 100 cycles.Kinetics studies indicate that the electrochemical behaviors are manipulated by both diffusion and pseudocapacitance processes. These strategies would open new opportunities and potention for novel energy storage.
文摘Flow transition from laminar to turbulent is prerequisite to decide whereabouts to apply surface flow control techniques. This appears missing in a number of works in which the control effects were merely investigated without getting insight into alteration of transition position. The aim of this study is to capture the correct position of transition over NACA0012 aerofoil at different angles of attack. Firstly, an implicit, time marching, high resolution total variation diminishing (TVD) scheme was developed to solve the governing Navier-Stokes equations for compressible fluid flows around aerofoil sections to obtain velocity profiles around the aerofoil surfaces. Secondly, the linear instability solver based on the Orr-Sommerfeld equations and the eg methods were developed to calculate the onset of transition over the aerofoil surfaces. For the low subsonic Mach number of 0.16, the accuracy of the compressible solutions was assessed by some available experimental results of low speed incompressible flows. In all cases, transition positions were accurately predicted which shows applicability and superiority of the present work to be extended for higher Mach number compressible flows. Here, transition prediction methodology is described and the results of this analysis without active flow control or separation are presented.
文摘This study presents numerical methods for solving the minimum energies that satisfy typical optimal requirements in the transition between two dynamic systems where each system is governed by a different kind of weakly singular integro-differential equation. The class of weakly singular integro-differential equations originates from mathematical models in aeroelasticity. The proposed numerical methods are based on earlier reported approximation schemes for the equations of the first kind and the second kind. The main result of this study is the development of numerical techniques for determining the stability between two dynamic systems in the minimum energy sense.