We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of s...We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.展开更多
Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finel...Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.展开更多
This paper proposes amodified formulation of the singular boundarymethod(SBM)by introducing the combined Helmholtz integral equation formulation(CHIEF)and the self-regularization technique to exterior acoustics.In the...This paper proposes amodified formulation of the singular boundarymethod(SBM)by introducing the combined Helmholtz integral equation formulation(CHIEF)and the self-regularization technique to exterior acoustics.In the SBM,the concept of the origin intensity factor(OIF)is introduced to avoid the singularities of the fundamental solutions.The SBM belongs to the meshless boundary collocation methods.The additional use of the CHIEF scheme and the self-regularization technique in the SBM guarantees the unique solution of the exterior acoustics accurately and efficiently.Consequently,by using the SBM coupled with the CHIEF scheme and the self-regularization technique,the accuracy of the numerical solution can be improved,especially near the corresponding internal characteristic frequencies.Several numerical examples of two-dimensional and threedimensional benchmark examples about exterior acoustics are used to verify the effectiveness and accuracy of the proposed method.The proposed numerical results are compared with the analytical solutions and the solutions obtained by the other numerical methods.展开更多
In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.T...In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band.展开更多
Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteri...Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteristics and attenuation coefficient.By designing an appropriate vector filter,phase velocity,attenuation coefficient and amplitude can be inverted from the waveform recorded by the receiver array.Performance analysis of this algorithm is compared with Extended Prony Method(EPM)and Forward and Backward Matrix Pencil(FBMP)method.Based on the analysis results,the proposed method is capable of achieving high resolution and precision as the parametric spectrum estimation methods.At the meantime,it also keeps high stability as the other nonparametric spectrum estimation methods.At last,applications to synthetic waveforms modeled using finite difference method and real data show its efficiency.The real data processing results show that the P-wave attenuation log is more sensitive to oil formation compared to S-wave;and the S-wave attenuation log is more sensitive to shale formation compared to P-wave.展开更多
This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary eleme...This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary element method(BEM),which uses a half-space Green function instead of the more conventional free-space Green function.On the other hand,a numerical implementation is illustrated to explore the formulation in simple idealized cases,controlled by a few parameters,which provides necessary tests for the accuracy and performance of the model.The half-space Green's function,which has been previously used in scattering and diffraction,adds terms to the usual expressions of the integral operators without altering their continuity properties.Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field.Likewise,numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region.展开更多
Expressions are derived for calculating the three-dimensional acoustic radiation force(ARF)on a multilayer microsphere positioned arbitrarily in a Gaussian beam.A theoretical model of a three-layer microsphere with a ...Expressions are derived for calculating the three-dimensional acoustic radiation force(ARF)on a multilayer microsphere positioned arbitrarily in a Gaussian beam.A theoretical model of a three-layer microsphere with a cell membrane,cytoplasm,and nucleus is established to study how particle geometry and position affect the three-dimensional ARF,and its results agree well with finite-element numerical results.The microsphere can be moved relative to the beam axis by changing its structure and position in the beam,and the axial ARF increases with increasing outer-shell thickness and core size.This study offers a theoretical foundation for selecting suitable parameters for manipulating a three-layer microsphere in a Gaussian beam.展开更多
Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation...Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation efectiveness and precision, is presented for solving the acoustic radiation from a submerged infnite non-circular cylindrical shell stifened by longitudinal ribs by means of the Fourier integral transformation and stationary phase method. In this work, besides the normal interacting force, which is commonly adopted by some researchers, the other interacting forces and moments between the longitudinal ribs and the non-circular cylindrical shell are considered at the same time. The efects of the number and the size of the cross-section of longitudinal ribs on the characteristics of acoustic radiation are investigated. Numerical results show that the method proposed is more efcient than the existing mixed FE-BE method.展开更多
By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at t...By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed. Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.展开更多
Large amplitude (1+1)-dimensional nonlinear ion acoustic waves are theoretically studied in multicomponent plasma consisting of positively charged ions and negatively charged ions, ion beam, kappa-distributed electron...Large amplitude (1+1)-dimensional nonlinear ion acoustic waves are theoretically studied in multicomponent plasma consisting of positively charged ions and negatively charged ions, ion beam, kappa-distributed electrons, and dust grains,respectively. By using the Sagdeev potential method, the dynamical system and the Sagdeev potential function are obtained.The important influences of system parameters on the phase diagram of this system are investigated. It is found that the linear waves, the nonlinear waves and the solitary waves are coexistent in the multicomponent plasma system. Meanwhile,the variations of Sagdeev potential with parameter can also be obtained. Finally, it seems that the propagating characteristics of (1+1)-dimensional nonlinear ion acoustic solitary waves and ion acoustic nonlinear shock wave can be influenced by different parameters of this system.展开更多
In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effec...In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.展开更多
The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect ...The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.展开更多
This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the...This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.展开更多
This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs i...This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.展开更多
We present the СATEС software, which implements the solution to the problems of computational acoustics. The software is based on the use of the superelement method and finite element modeling algorithms, in-cluding...We present the СATEС software, which implements the solution to the problems of computational acoustics. The software is based on the use of the superelement method and finite element modeling algorithms, in-cluding hydrodynamic noise. The paper presents the main possibilities of software for solving acoustic design problems. .展开更多
Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The r...Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The results show that the finite element calculation of the multilayer sound absorbing material straight-through the perforated pipe muffler agrees well with the experimental measurement results.The reliability of the finite element method for studying the acoustic performance of the straight-through perforated pipe muffler with multilayer sound absorbing materials is shown.Furthermore,the influence of some structural parameters of porous sound absorbing material and micro-perforated plate on the acoustic performance of the multilayer sound absorbing material straight-through perforated pipe muffler is analyzed.The muffler based on multilayer sound absorbing material is different from the traditional muffler.After applying the multilayer sound absorbing material to the straight-through perforated pipe muffler,the transmission loss value greatly increases,which provides new ideas and directions for future research on the muffler.展开更多
The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acous...The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acoustic emission(AE)behaviors of coal samples under multi-stage compressive cyclic loading with different loading and unloading rates,which is termed differential cyclic loading(DCL).A Weibull-distribution-based model with heterogeneous bond strengths is constructed by both considering the stress-strain relations and AE parameters.Six previously loaded samples were respectively grouped to indicate two DCL regimes,the damage mechanisms for the two groups are explicitly characterized via the time-stress-dependent variation of bond size multiplier,and it is found the two regimes correlate with distinct damage patterns,which involves the competition between stiffness hardening and softening.The numerical b-value is calculated based on the mag-nitudes of AE energy,the results show that both stress level and bond radius multiplier can impact the numerical b-value.The proposed numerical model succeeds in replicating the stress-strain relations of lab data as well as the elastic-after effect in DCL tests.The effect of damping on energy dissipation and phase shift in numerical model is summarized.展开更多
The depth of upper fault point is the key data for ascertaining the active age of a buried fault on a plain. The difference of depth obtained from same fault may be dozens to several hundred meters when using differen...The depth of upper fault point is the key data for ascertaining the active age of a buried fault on a plain. The difference of depth obtained from same fault may be dozens to several hundred meters when using different geophysical methods. It can result in the absolutely opposite conclusions when judging fault activity. Because of a lack of an artificial earthquake source with wide band and high central frequency, many kinds of methods have to be used together. The higher the frequency of the artificial earthquake wave, electromagnetic wave and sonic wave, the higher the resolution. However the attenuation is also very fast and the exploration depth is very shallow. The reverse is also true. The frequency of artificial seismic waves is in the tens of Hz. Its exploration depth is big and the resolution is poor. The frequency of radar electromagnetic waves is about a million Hz, indicating that the resolving power is better, but the exploration depth is very shallow. However, the acoustic frequency is thousands of Hz, its resolving power is better than that of the artificial earthquake method and the exploration depth is larger than that of the radar method. So it is suitable for extra shallow exploration in the thick deposit strata of the Quaternary. The preliminary results detected using the high frequency acoustic method in extra shallow layers indicates that previous inferences about some fault activity in the eastern part of the North China plain may need to be greatly corrected.展开更多
RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In s...RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication.展开更多
Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE...Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.展开更多
基金partially supported by the NSF(Grant Nos.2012046,2152011,and 2309534)partially supported by the NSF(Grant Nos.DMS-1715178,DMS-2006881,and DMS-2237534)+1 种基金NIH(Grant No.R03-EB033521)startup fund from Michigan State University.
文摘We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.
基金This work is supported in part by the National Natural Science Foundation of China(U19B6003-04-01,42204132,41874130)R&D Department of CNPC(2022DQ0604-01)China Postdoctoral Science Foundation(2020M680667,2021T140661).
文摘Conventional seismic wave forward simulation generally uses mathematical means to solve the macroscopic wave equation,and then obtains the corresponding seismic wavefield.Usually,when the subsurface structure is finely constructed and the continuity of media is poor,this strategy is difficult to meet the requirements of accurate wavefield calculation.This paper uses the multiple-relaxation-time lattice Boltzmann method(MRT-LBM)to conduct the seismic acoustic wavefield simulation and verify its computational accuracy.To cope with the problem of severe reflections at the truncated boundaries,we analogize the viscous absorbing boundary and perfectly matched layer(PML)absorbing boundary based on the single-relaxation-time lattice Boltzmann(SRT-LB)equation to the MRT-LB equation,and further,propose a joint absorbing boundary through comparative analysis.We give the specific forms of the modified MRT-LB equation loaded with the joint absorbing boundary in the two-dimensional(2D)and three-dimensional(3D)cases,respectively.Then,we verify the effects of this absorbing boundary scheme on a 2D homogeneous model,2D modified British Petroleum(BP)gas-cloud model,and 3D homogeneous model,respectively.The results reveal that by comparing with the viscous absorbing boundary and PML absorbing boundary,the joint absorbing boundary has the best absorption performance,although it is a little bit complicated.Therefore,this joint absorbing boundary better solves the problem of truncated boundary reflections of MRT-LBM in simulating seismic acoustic wavefields,which is pivotal to its wide application in the field of exploration seismology.
基金supported by the National Science Fund of China(Grant No.12122205)the Six Talent Peaks Project in Jiangsu Province of China(Grant No.2019-KTHY-009).
文摘This paper proposes amodified formulation of the singular boundarymethod(SBM)by introducing the combined Helmholtz integral equation formulation(CHIEF)and the self-regularization technique to exterior acoustics.In the SBM,the concept of the origin intensity factor(OIF)is introduced to avoid the singularities of the fundamental solutions.The SBM belongs to the meshless boundary collocation methods.The additional use of the CHIEF scheme and the self-regularization technique in the SBM guarantees the unique solution of the exterior acoustics accurately and efficiently.Consequently,by using the SBM coupled with the CHIEF scheme and the self-regularization technique,the accuracy of the numerical solution can be improved,especially near the corresponding internal characteristic frequencies.Several numerical examples of two-dimensional and threedimensional benchmark examples about exterior acoustics are used to verify the effectiveness and accuracy of the proposed method.The proposed numerical results are compared with the analytical solutions and the solutions obtained by the other numerical methods.
基金sponsored by Natural Science Foundation of Henan under Grant No.222300420498.
文摘In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band.
基金This research was supported by the National Natural Science Foundation of China(No.42274141)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ007).
文摘Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteristics and attenuation coefficient.By designing an appropriate vector filter,phase velocity,attenuation coefficient and amplitude can be inverted from the waveform recorded by the receiver array.Performance analysis of this algorithm is compared with Extended Prony Method(EPM)and Forward and Backward Matrix Pencil(FBMP)method.Based on the analysis results,the proposed method is capable of achieving high resolution and precision as the parametric spectrum estimation methods.At the meantime,it also keeps high stability as the other nonparametric spectrum estimation methods.At last,applications to synthetic waveforms modeled using finite difference method and real data show its efficiency.The real data processing results show that the P-wave attenuation log is more sensitive to oil formation compared to S-wave;and the S-wave attenuation log is more sensitive to shale formation compared to P-wave.
文摘This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary element method(BEM),which uses a half-space Green function instead of the more conventional free-space Green function.On the other hand,a numerical implementation is illustrated to explore the formulation in simple idealized cases,controlled by a few parameters,which provides necessary tests for the accuracy and performance of the model.The half-space Green's function,which has been previously used in scattering and diffraction,adds terms to the usual expressions of the integral operators without altering their continuity properties.Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field.Likewise,numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region.
基金supported by the National Natural Science Foundation of China (Grant No.11874252)the Fundamental Research Funds for the Central Universities (Grant No.2020TS029).
文摘Expressions are derived for calculating the three-dimensional acoustic radiation force(ARF)on a multilayer microsphere positioned arbitrarily in a Gaussian beam.A theoretical model of a three-layer microsphere with a cell membrane,cytoplasm,and nucleus is established to study how particle geometry and position affect the three-dimensional ARF,and its results agree well with finite-element numerical results.The microsphere can be moved relative to the beam axis by changing its structure and position in the beam,and the axial ARF increases with increasing outer-shell thickness and core size.This study offers a theoretical foundation for selecting suitable parameters for manipulating a three-layer microsphere in a Gaussian beam.
基金Project supported by the National Natural Science Foundation of China(No.10172038),the Doctoral Foundation ofthe National Education Ministry(No.20040487013)and the Natural Science Foundation of Guangxi(No.0339019).
文摘Based on the extended homogeneous capacity high precision integration method and the spectrum method of virtual boundary with a complex radius vector, a novel semi-analytical method, which has satisfactory computation efectiveness and precision, is presented for solving the acoustic radiation from a submerged infnite non-circular cylindrical shell stifened by longitudinal ribs by means of the Fourier integral transformation and stationary phase method. In this work, besides the normal interacting force, which is commonly adopted by some researchers, the other interacting forces and moments between the longitudinal ribs and the non-circular cylindrical shell are considered at the same time. The efects of the number and the size of the cross-section of longitudinal ribs on the characteristics of acoustic radiation are investigated. Numerical results show that the method proposed is more efcient than the existing mixed FE-BE method.
基金Project supported by the National Natural Science Foundation of China (No. 10172038).
文摘By virtue of the comparability between the wave superposition method and the dynamic analysis of structures, a general format for overcoming the non-uniqueness of solution induced by the wave superposition method at the eigenfrequencies of the corresponding interior problems is proposed. By adding appropriate damp to the virtual source system of the wave superposition method, the unique solutions for all wave numbers can be ensured. Based on this thought, a novel method-wave superposition method with complex radius vector is constructed. Not only is the computational time of this method approximately equal to that of the standard wave superposition method, but also the accuracy is much higher compared with other correlative methods. Finally, by taking the pulsating sphere and oscillating sphere as examples, the results of calculation show that the present method can effectively overcome the non-uniqueness problem.
文摘Large amplitude (1+1)-dimensional nonlinear ion acoustic waves are theoretically studied in multicomponent plasma consisting of positively charged ions and negatively charged ions, ion beam, kappa-distributed electrons, and dust grains,respectively. By using the Sagdeev potential method, the dynamical system and the Sagdeev potential function are obtained.The important influences of system parameters on the phase diagram of this system are investigated. It is found that the linear waves, the nonlinear waves and the solitary waves are coexistent in the multicomponent plasma system. Meanwhile,the variations of Sagdeev potential with parameter can also be obtained. Finally, it seems that the propagating characteristics of (1+1)-dimensional nonlinear ion acoustic solitary waves and ion acoustic nonlinear shock wave can be influenced by different parameters of this system.
基金the National Natural Science Foundation of China under Grant No.10474016.
文摘In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.
文摘The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.
基金Project supported by the National Natural Science Foundation of China(No.11074170)the State Key Laboratory Foundation of Shanghai Jiao Tong University(No.MSVMS201105)
文摘This paper describes formulation and implementation of the fast multipole boundary element method (FMBEM) for 2D acoustic problems. The kernel function expansion theory is summarized, and four building blocks of the FMBEM are described in details. They are moment calculation, moment to moment translation, moment to local translation, and local to local translation. A data structure for the quad-tree construction is proposed which can facilitate implementation. An analytical moment expression is derived, which is more accurate, stable, and efficient than direct numerical computation. Numerical examples are presented to demonstrate the accuracy and efficiency of the FMBEM, and radiation of a 2D vibration rail mode is simulated using the FMBEM.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10974115)
文摘This paper presents an analytical method for electromagnetic acoustic transducers (EMATs) under voltage excitation and considers the non-uniform distribution of the biased magnetic field. A complete model of EMATs including the non-uniform biased magnetic field, a pulsed eddy current field and the acoustic field is built up. The pulsed voltage excitation is transformed to the frequency domain by fast Fourier transformation (FFT). In terms of the time harmonic field equations of the EMAT system, the impedances of the coils under different frequencies are calculated according to the circuit-field coupling method and Poynting's theorem. Then the currents under different frequencies are calculated according to Ohm's law and the pulsed current excitation is obtained by inverse fast Fourier transformation (IFFT). Lastly, the sequentially coupled finite element method (FEM) is used to calculate the Lorentz force in the EMATs under the current excitation. An actual EMAT with a two-layer two-bundle printed circuit board (PCB) coil, a rectangular permanent magnet and an aluminium specimen is analysed. The coil impedances and the pulsed current are calculated and compared with the experimental results. Their agreement verified the validity of the proposed method. Furthermore, the influences of lift-off distances and the non-uniform static magnetic field on the Lorentz force under pulsed voltage excitation are studied.
文摘We present the СATEС software, which implements the solution to the problems of computational acoustics. The software is based on the use of the superelement method and finite element modeling algorithms, in-cluding hydrodynamic noise. The paper presents the main possibilities of software for solving acoustic design problems. .
基金National Natural Science Foundation of China(Nos.51705545 and 15A460041)。
文摘Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The results show that the finite element calculation of the multilayer sound absorbing material straight-through the perforated pipe muffler agrees well with the experimental measurement results.The reliability of the finite element method for studying the acoustic performance of the straight-through perforated pipe muffler with multilayer sound absorbing materials is shown.Furthermore,the influence of some structural parameters of porous sound absorbing material and micro-perforated plate on the acoustic performance of the multilayer sound absorbing material straight-through perforated pipe muffler is analyzed.The muffler based on multilayer sound absorbing material is different from the traditional muffler.After applying the multilayer sound absorbing material to the straight-through perforated pipe muffler,the transmission loss value greatly increases,which provides new ideas and directions for future research on the muffler.
基金funded by Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining (GJNY-20-113-03),SHGF-16-19the Fundamental Research Funds for the Central Universities (06500182)+2 种基金Funds from Joint National-Local Engineering Research Center for Safe and Precise Coal Mining (EC2021004)Funds from State Key Laboratory of Coal Resources in Western China (SKLCRKF20-07)Funds from Humboldt Research Fellowship,Funds from NSFC (52204086).
文摘The stability of coal walls(pillars)can be seriously undermined by diverse in-situ dynamic disturbances.Based on a 3D par-ticle model,this work strives to numerically replicate the major mechanical responses and acoustic emission(AE)behaviors of coal samples under multi-stage compressive cyclic loading with different loading and unloading rates,which is termed differential cyclic loading(DCL).A Weibull-distribution-based model with heterogeneous bond strengths is constructed by both considering the stress-strain relations and AE parameters.Six previously loaded samples were respectively grouped to indicate two DCL regimes,the damage mechanisms for the two groups are explicitly characterized via the time-stress-dependent variation of bond size multiplier,and it is found the two regimes correlate with distinct damage patterns,which involves the competition between stiffness hardening and softening.The numerical b-value is calculated based on the mag-nitudes of AE energy,the results show that both stress level and bond radius multiplier can impact the numerical b-value.The proposed numerical model succeeds in replicating the stress-strain relations of lab data as well as the elastic-after effect in DCL tests.The effect of damping on energy dissipation and phase shift in numerical model is summarized.
文摘The depth of upper fault point is the key data for ascertaining the active age of a buried fault on a plain. The difference of depth obtained from same fault may be dozens to several hundred meters when using different geophysical methods. It can result in the absolutely opposite conclusions when judging fault activity. Because of a lack of an artificial earthquake source with wide band and high central frequency, many kinds of methods have to be used together. The higher the frequency of the artificial earthquake wave, electromagnetic wave and sonic wave, the higher the resolution. However the attenuation is also very fast and the exploration depth is very shallow. The reverse is also true. The frequency of artificial seismic waves is in the tens of Hz. Its exploration depth is big and the resolution is poor. The frequency of radar electromagnetic waves is about a million Hz, indicating that the resolving power is better, but the exploration depth is very shallow. However, the acoustic frequency is thousands of Hz, its resolving power is better than that of the artificial earthquake method and the exploration depth is larger than that of the radar method. So it is suitable for extra shallow exploration in the thick deposit strata of the Quaternary. The preliminary results detected using the high frequency acoustic method in extra shallow layers indicates that previous inferences about some fault activity in the eastern part of the North China plain may need to be greatly corrected.
基金financially supported by Key Technologies R&D Program of Shandong Province(2015GSF115018)Natural Science Foundation of Shandong Province(ZR2013FL027+1 种基金ZR2013DM 014)Youth Foundation of Shandong Academy of Science(2013QN030)
文摘RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication.
基金the National Natural Science Foundation of China (Nos.52304123 and 52104077)the Postdoctoral Fellowship Program of CPSF (No.GZB20230914)+1 种基金the China Postdoctoral Science Foundation (No.2023M730412)the National Key Research and Development Program for Young Scientists (No.2021YFC2900400)。
文摘Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.