Small fixed aggregates of a poly(ethylene oxide)-block-polybutadiene diblock copolymer(PEO-b-PB)in THFsolution were obtained by adding a selective solvent for PB blocks,followed by cross-linking the PB shells.Themorph...Small fixed aggregates of a poly(ethylene oxide)-block-polybutadiene diblock copolymer(PEO-b-PB)in THFsolution were obtained by adding a selective solvent for PB blocks,followed by cross-linking the PB shells.Themorphologies of the nanostructured particles with a cross-linked shell were investigated by atomic force microscopy andtransmission electron microscopy.The average behaviors of the PEO crystallization and melting confined within thenanostructured particles were studied by using differential scanning calorimetry experiments.For the deeply cross-linkedsample(SCL-1),the crystallization of the PEO blocks was fully confined.The individual nanoparticles only crystallized atvery low crystallization temperatures(T_cs),wherein the homogenous primary nucleation determined the overallcrystallization rate.For the lightly cross-linked sample(SCL-2),the confinement effect was T_c dependent.At T_c(?)42℃,thecrystallization and melting behaviors of SCL-2 were similar to those of the pure PEO-b-PB diblock copolymer.At T_c>42℃,SCL-2 could form PEO lamellae thicker than those of the pure PEO-b-PB crystallized at the same T_c.展开更多
Amyloids have traditionally been considered pathologic protein aggregates which contribute to neurodegeneration.New evidence however increasingly suggests that non-pathological amyloids are formed in animals during no...Amyloids have traditionally been considered pathologic protein aggregates which contribute to neurodegeneration.New evidence however increasingly suggests that non-pathological amyloids are formed in animals during normal development.Amyloid-like aggregate formation was originally thought to be a conserved feature of animal gametogenesis.This hypothesis was based on findings which suggest that regulated amyloid formations govern yeast meiosis by way of meiosis-specific RNA binding proteins.Additional support came from studies which demonstrate that DAZL,a mammalian gametogenesis-specific RNA binding protein,also forms SDS-resistant aggregates in vivo.Here,we report evidence of aggregated BOULE formations,another DAZ family protein,during sperm development.Data suggest that in mouse testis,BOULE forms SDS-resistant amyloid-like aggregates.BOULE aggregate formation correlates with dynamic developmental expression during spermatogenesis but disappeared in Boule knockout testis.We also mapped essential small region in vitro BOULE aggregations,immediately downstream DAZ repeats,and found that aggregations positively correlated with temperature.We also performed enhanced UV cross-linking immunoprecipitation on BOULE aggregates from mouse testes and found that aggregates bind with a large number of spermatogenesis-related mRNAs.These findings provide insight into the amyloidogenic properties of gametogenesis-specific RNA binding proteins as a conserved feature in mammalian reproduction.Further investigation is warranted to understand the functional significance of BOULE amyloid-like formation during mouse spermatogenesis.展开更多
In this workα-amylase was immobilized on magnetic Fe3O4 nanoparticles with polyethylenimine(PEI)/polydopamine(PDA)coating or 3-aminopropyl triethoxysilane(APTES)for the first time via adsorption–precipitation–cross...In this workα-amylase was immobilized on magnetic Fe3O4 nanoparticles with polyethylenimine(PEI)/polydopamine(PDA)coating or 3-aminopropyl triethoxysilane(APTES)for the first time via adsorption–precipitation–cross-linking.Compared with the freeα-amylase,the resultant magnetic cross-linkedα-amylase aggregates(PEI/PDA-M-CLEAs and N-M-CLEAs)exhibited excellent thermal and storage stability as well as pH stability.After storage at 25°C for 60 days,freeα-amylase only retained 60%of its initial activity,while PEI/PDA-M-CLEAs and N-M-CLEAs retained 80%and 78%of their initial activities,respectively.Furthermore,N-M-CLEAs and PEI/PDA-M-CLEAs showed good reusability.After 6 repeated uses,PEI/PDA-M-CLEAs and N-M-CLEAs still maintained 65%and 62%of their initial activities,respectively.Especially,PEI/PDA-M-CLEAs and N-M-CLEAs exhibited higher starch hydrolysis efficiency than freeα-amylase.The maximum dextrose equivalent(DE)values of starch hydrolysis by PEI/PDA-M-CLEAs and N-M-CLEAs reached 29.24%and 28.79%within 90 min,respectively.However,the maximum DE values of starch hydrolysis by the freeα-amylase was only 27.89%even in 150 min.The magnetic cross-linkedα-amylase aggregates could be introduced as effective biocatalyst for industrial applications in production of maltose syrups.展开更多
Solid-state fluorescent multi-color carbon dots(SFM-CDs),prepared using the same precursor(s)without the need for dispersion in a solid matrix,are highly demanded for a wide range of applications.Herein,we report a mi...Solid-state fluorescent multi-color carbon dots(SFM-CDs),prepared using the same precursor(s)without the need for dispersion in a solid matrix,are highly demanded for a wide range of applications.Herein,we report a microwave-assisted strategy for the prepara-tion of SFM-CDs with blue,yellow and red emissions within 5 min from the same precursors.The as-prepared B-CDs,Y-CDs,and R-CDs possessed bright fluorescence at 425 nm,550 nm,and 640 nm,and photoluminescence quantum yields(PLQYs)of 54.68%,17.93%,and 2.88%,respectively.The structure of SFM-CDs consisted of 5-oxo-3,5-dihydro-2H-thiazolo[3,2-a]pyridine-7-carboxylic acid(TPCA)immobilized on the surface of a carbon core,with the size of the carbon core and degree of disulfide crosslinking between CDs both increasing on going from the B-CDs to the R-CDs,as verified by mechanochromic experiments.The excellent solid-state fluorescence performance of the SFM-CDs allowed their utilization as the fluorescent converter layer in multi-color LEDs and white LEDs with a high color rendering index.展开更多
Hydrogel scaffolds are attractive for tissue defect repair and reorganization because of their human tissue-like characteristics.However,most hydrogels offer limited cell growth and tissue formation ability due to the...Hydrogel scaffolds are attractive for tissue defect repair and reorganization because of their human tissue-like characteristics.However,most hydrogels offer limited cell growth and tissue formation ability due to their submicron-or nano-sized gel networks,which restrict the supply of oxygen,nutrients and inhibit the proliferation and differentiation of encapsulated cells.In recent years,3D printed hydrogels have shown great potential to overcome this problem by introducing macro-pores within scaffolds.In this study,we fabricated a macroporous hydrogel scaffold through horseradish peroxidase(HRP)-mediated crosslinking of silk fibroin(SF)and tyramine-substituted gelatin(GT)by extrusion-based low-temperature 3D printing.Through physicochemical characterization,we found that this hydrogel has excellent structural stability,suitable mechanical properties,and an adjustable degradation rate,thus satisfying the requirements for cartilage reconstruction.Cell suspension and aggregate seeding methods were developed to assess the inoculation efficiency of the hydrogel.Moreover,the chondrogenic differentiation of stem cells was explored.Stem cells in the hydrogel differentiated into hyaline cartilage when the cell aggregate seeding method was used and into fibrocartilage when the cell suspension was used.Finally,the effect of the hydrogel and stem cells were investigated in a rabbit cartilage defect model.After implantation for 12 and 16 weeks,histological evaluation of the sections was performed.We found that the enzymatic cross-linked and methanol treatment SF5GT15 hydrogel combined with cell aggregates promoted articular cartilage regeneration.In summary,this 3D printed macroporous SF-GT hydrogel combined with stem cell aggregates possesses excellent potential for application in cartilage tissue repair and regeneration.展开更多
Chemical cross-linking provides an effective avenue to reduce the conformational entropy of polypeptide chains and hence has become a popular method to induce or force structural formation in peptides and proteins.Rec...Chemical cross-linking provides an effective avenue to reduce the conformational entropy of polypeptide chains and hence has become a popular method to induce or force structural formation in peptides and proteins.Recently,other types of molecular constraints,especially photoresponsive linkers and functional groups,have also found increased use in a wide variety of applications.Herein,we provide a concise review of using various forms of molecular strategies to constrain proteins,thereby stabilizing their native states,gaining insight into their folding mechanisms,and/or providing a handle to trigger a conformational process of interest with light.The applications discussed here cover a wide range of topics,ranging from delineating the details of the protein folding energy landscape to controlling protein assembly and function.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.2002541420374003).
文摘Small fixed aggregates of a poly(ethylene oxide)-block-polybutadiene diblock copolymer(PEO-b-PB)in THFsolution were obtained by adding a selective solvent for PB blocks,followed by cross-linking the PB shells.Themorphologies of the nanostructured particles with a cross-linked shell were investigated by atomic force microscopy andtransmission electron microscopy.The average behaviors of the PEO crystallization and melting confined within thenanostructured particles were studied by using differential scanning calorimetry experiments.For the deeply cross-linkedsample(SCL-1),the crystallization of the PEO blocks was fully confined.The individual nanoparticles only crystallized atvery low crystallization temperatures(T_cs),wherein the homogenous primary nucleation determined the overallcrystallization rate.For the lightly cross-linked sample(SCL-2),the confinement effect was T_c dependent.At T_c(?)42℃,thecrystallization and melting behaviors of SCL-2 were similar to those of the pure PEO-b-PB diblock copolymer.At T_c>42℃,SCL-2 could form PEO lamellae thicker than those of the pure PEO-b-PB crystallized at the same T_c.
基金supported by the National Natural Science Foundation of China(No.3197060323)SKLRM grant(SKLRM-2019B2)the Jiangsu ShuangChuang Talent Program,as well as the Jiangsu graduate student innovation fellowship to Y.S.
文摘Amyloids have traditionally been considered pathologic protein aggregates which contribute to neurodegeneration.New evidence however increasingly suggests that non-pathological amyloids are formed in animals during normal development.Amyloid-like aggregate formation was originally thought to be a conserved feature of animal gametogenesis.This hypothesis was based on findings which suggest that regulated amyloid formations govern yeast meiosis by way of meiosis-specific RNA binding proteins.Additional support came from studies which demonstrate that DAZL,a mammalian gametogenesis-specific RNA binding protein,also forms SDS-resistant aggregates in vivo.Here,we report evidence of aggregated BOULE formations,another DAZ family protein,during sperm development.Data suggest that in mouse testis,BOULE forms SDS-resistant amyloid-like aggregates.BOULE aggregate formation correlates with dynamic developmental expression during spermatogenesis but disappeared in Boule knockout testis.We also mapped essential small region in vitro BOULE aggregations,immediately downstream DAZ repeats,and found that aggregations positively correlated with temperature.We also performed enhanced UV cross-linking immunoprecipitation on BOULE aggregates from mouse testes and found that aggregates bind with a large number of spermatogenesis-related mRNAs.These findings provide insight into the amyloidogenic properties of gametogenesis-specific RNA binding proteins as a conserved feature in mammalian reproduction.Further investigation is warranted to understand the functional significance of BOULE amyloid-like formation during mouse spermatogenesis.
基金the Fundamental Research Funds for the Central Universities(grant No.226-2023-0085)the Science and Technology Program of Tianjin,China(grant No.20ZYJDJC00080)the International Collaboration Project(grant No.2020/37/K/ST8/03805).
文摘In this workα-amylase was immobilized on magnetic Fe3O4 nanoparticles with polyethylenimine(PEI)/polydopamine(PDA)coating or 3-aminopropyl triethoxysilane(APTES)for the first time via adsorption–precipitation–cross-linking.Compared with the freeα-amylase,the resultant magnetic cross-linkedα-amylase aggregates(PEI/PDA-M-CLEAs and N-M-CLEAs)exhibited excellent thermal and storage stability as well as pH stability.After storage at 25°C for 60 days,freeα-amylase only retained 60%of its initial activity,while PEI/PDA-M-CLEAs and N-M-CLEAs retained 80%and 78%of their initial activities,respectively.Furthermore,N-M-CLEAs and PEI/PDA-M-CLEAs showed good reusability.After 6 repeated uses,PEI/PDA-M-CLEAs and N-M-CLEAs still maintained 65%and 62%of their initial activities,respectively.Especially,PEI/PDA-M-CLEAs and N-M-CLEAs exhibited higher starch hydrolysis efficiency than freeα-amylase.The maximum dextrose equivalent(DE)values of starch hydrolysis by PEI/PDA-M-CLEAs and N-M-CLEAs reached 29.24%and 28.79%within 90 min,respectively.However,the maximum DE values of starch hydrolysis by the freeα-amylase was only 27.89%even in 150 min.The magnetic cross-linkedα-amylase aggregates could be introduced as effective biocatalyst for industrial applications in production of maltose syrups.
基金supported by the National Natural Science Foundation of China(52122308,21905253,51973200,52203244,21725304)the Natural Science Foundation of Henan Province(202300410372)the China Postdoctoral Science Foundation(2022M712868).
文摘Solid-state fluorescent multi-color carbon dots(SFM-CDs),prepared using the same precursor(s)without the need for dispersion in a solid matrix,are highly demanded for a wide range of applications.Herein,we report a microwave-assisted strategy for the prepara-tion of SFM-CDs with blue,yellow and red emissions within 5 min from the same precursors.The as-prepared B-CDs,Y-CDs,and R-CDs possessed bright fluorescence at 425 nm,550 nm,and 640 nm,and photoluminescence quantum yields(PLQYs)of 54.68%,17.93%,and 2.88%,respectively.The structure of SFM-CDs consisted of 5-oxo-3,5-dihydro-2H-thiazolo[3,2-a]pyridine-7-carboxylic acid(TPCA)immobilized on the surface of a carbon core,with the size of the carbon core and degree of disulfide crosslinking between CDs both increasing on going from the B-CDs to the R-CDs,as verified by mechanochromic experiments.The excellent solid-state fluorescence performance of the SFM-CDs allowed their utilization as the fluorescent converter layer in multi-color LEDs and white LEDs with a high color rendering index.
基金This work was financially supported by the National Natural Science Foundation of China(Grant nos.52073103,51873069 and 51873071)the National Key R&D Program of China(Grant No.2018YFC1106300)+1 种基金Beijing Municipal Health Commission(Grant nos.BMHC-2019-9,BMHC-2018-4 and PXM2020_026275_000002)the funds for Zhongshan Innovation Project of high-end Scientific Research Institutions(Grant No.2020AG020).
文摘Hydrogel scaffolds are attractive for tissue defect repair and reorganization because of their human tissue-like characteristics.However,most hydrogels offer limited cell growth and tissue formation ability due to their submicron-or nano-sized gel networks,which restrict the supply of oxygen,nutrients and inhibit the proliferation and differentiation of encapsulated cells.In recent years,3D printed hydrogels have shown great potential to overcome this problem by introducing macro-pores within scaffolds.In this study,we fabricated a macroporous hydrogel scaffold through horseradish peroxidase(HRP)-mediated crosslinking of silk fibroin(SF)and tyramine-substituted gelatin(GT)by extrusion-based low-temperature 3D printing.Through physicochemical characterization,we found that this hydrogel has excellent structural stability,suitable mechanical properties,and an adjustable degradation rate,thus satisfying the requirements for cartilage reconstruction.Cell suspension and aggregate seeding methods were developed to assess the inoculation efficiency of the hydrogel.Moreover,the chondrogenic differentiation of stem cells was explored.Stem cells in the hydrogel differentiated into hyaline cartilage when the cell aggregate seeding method was used and into fibrocartilage when the cell suspension was used.Finally,the effect of the hydrogel and stem cells were investigated in a rabbit cartilage defect model.After implantation for 12 and 16 weeks,histological evaluation of the sections was performed.We found that the enzymatic cross-linked and methanol treatment SF5GT15 hydrogel combined with cell aggregates promoted articular cartilage regeneration.In summary,this 3D printed macroporous SF-GT hydrogel combined with stem cell aggregates possesses excellent potential for application in cartilage tissue repair and regeneration.
基金supported by the National Institutes of Health(GM-065978,AG-039253)
文摘Chemical cross-linking provides an effective avenue to reduce the conformational entropy of polypeptide chains and hence has become a popular method to induce or force structural formation in peptides and proteins.Recently,other types of molecular constraints,especially photoresponsive linkers and functional groups,have also found increased use in a wide variety of applications.Herein,we provide a concise review of using various forms of molecular strategies to constrain proteins,thereby stabilizing their native states,gaining insight into their folding mechanisms,and/or providing a handle to trigger a conformational process of interest with light.The applications discussed here cover a wide range of topics,ranging from delineating the details of the protein folding energy landscape to controlling protein assembly and function.