Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked pol...Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues.展开更多
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M...High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
In this study,we isolated starches from non-traditional sources,including quinoa,lentil,arrowhead,gorgon fruit,sorghum,chickpea,proso millet,and purple potato and investigated their morphology,physicochemical,and func...In this study,we isolated starches from non-traditional sources,including quinoa,lentil,arrowhead,gorgon fruit,sorghum,chickpea,proso millet,and purple potato and investigated their morphology,physicochemical,and functional properties.Significant differences in starch particle morphology,swelling power,solubility,syneresis,crystalline pattern,and pasting viscosity were observed among the starches from these nontraditional sources.Further,all these isolated starches had unique properties because of their characteristic distinct granules when seen under scanning electron microscopy(SEM).The amylose content of the isolated starches shown significant difference(P<0.05),and the values ranged between 11.46%and 37.61%.Results demonstrated that the isolated starches contained between 79.82%to 86.56%starch,indicating that the isolated starches had high purity.X-ray diffraction(XRD)patterns of starches isolated from sorghum,proso millet,quinoa,purple potato,and gorgon fruit presented A-type diffraction pattern;while lentil seeds,arrowhead,and chickpea starches presented C-type diffraction pattern.Overall,these results will promote the development of products based on starch isolated from non-traditional starches.展开更多
Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability drama...Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability dramatically hinder the transformation of LMAs from laboratory to industry.Herein,an in situ formed cross-linked polymer layer on LMAs is designed and constructed by a facile thiol-acrylate click chemistry reaction between poly(ethylene glycol)diacrylate(PEGDA)and the crosslinker containing multi thiol groups under UV irradiation.Owing to the hydrophobic nature of the layer,the treated LMAs demonstrate remarkable humid stability for more than 3 h in ambient air(70%relative humidity).The coating humid-resistant protective layer also possesses a dual-functional characterization as solid polymer electrolytes by introducing lithium bis(trifluoromethanesulfonyl)imide in the system in advance.The intimate contact between the polymer layer and LMAs reduces interfacial resistance in the assembled Li/LiFePO_(4)or Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cell effectively,and endows the cell with an outstanding cycle performance.展开更多
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie...Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.展开更多
Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.I...Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.In this study,garbanzo bean cells with varying degrees of cell wall integrity were subjected to dry heat treatment(DHT)and used to elucidate the food structure-starch digestion properties of pulse food.The morphological features suggested that all cell samples do not exhibit remarkable changes after being subjected to DHT.Molecular rearrangement and the crystallite disruption of starch granules entrapped in cells occurred during DHT as assessed by the crystal structure and thermal properties.DHT decreased the inhibitory effects of enzymes of both the soluble and insoluble components,but the digestion rate and extent of slightly and highly damaged cell samples did not exhibit significant differences compared with their native counterparts.We concluded that the starch digestion of pulse cotyledon cells is primarily determined by the intactness of the cellular structure.This study reveals the role of food structure on the ability to retain the desirable nutritional properties of starch after subjection to physical modification.展开更多
This research paper describes the synthesis of thermo-reversible cross-linking of sago starch by grafting a furan pendant group(methyl 2-furoate)onto the starch backbone,followed by a Diels-Alder(DA)reaction of the fu...This research paper describes the synthesis of thermo-reversible cross-linking of sago starch by grafting a furan pendant group(methyl 2-furoate)onto the starch backbone,followed by a Diels-Alder(DA)reaction of the furan functional group with 1,1′-(methylenedi-4,1-phenylene)bismaleimide(BM).The proof of principles was provided by FTIR and 1H-NMR analyses.The relevant FTIR peaks are the carbonyl peak(υC=O sym)at 1721 cm^(−1);the two peaks appeared after DA cross-linking,i.e.,at 1510 cm^(−1)(corresponding toυCH=CH BM aromatic rings,stretching vibrations),and at 1173 cm^(−1)(assigned to cycloadduct(C-O-C,δDA ring))while the^(1)H-NMR result shows evidence for the presence of a furan ring in the starch matrices(in the range ofδ6.3-7.5 ppm).The crosslinked starch product is indeed thermally reversible,as is evident from the appearance of exothermal(DA,temperature range of 50℃-70℃)and endothermal(retro DA,temperature range of 125℃-150℃)transitions in the DSC thermograms.This paper not only proves the thermal reversibility but also demonstrates that the final product properties(chemical,morphology,and thermal stability)can be tuned by varying the annealing temperature,BM intake,and reaction time.展开更多
Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations,since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modu...Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations,since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modulated and specific properties that meet specific therapeutic needs.Objective:In this work the influence of polymer ratio and cross-linking process on the swelling and the mechanism driving the drug release from swellable matrix tablets prepared with this excipient was investigated.Methods:Cross-linked samples were characterized by their micromeritic properties(size and shape,density,angle of repose and flow rate)and liquid uptake ability.Matrix tablets were evaluated according their physical properties and the drug release rates and mechanisms were also investigated.Results:Cross-linked samples demonstrated size homogeneity and irregular shape,with liquid uptake ability insensible to pH.Cross-linking process of samples allowed the control of drug release rates and the drug release mechanism was influenced by both polymer ratio and cross-linking process.The drug release of samples with minor proportion of pectin was driven by an anomalous transport and the increase of the pectin proportion contributed to the erosion of the matrix.Conclusion:The cross-linked mixtures of high amylose and pectin showed a suitable excipient for slowing the drug release rates.展开更多
SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and ad...SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and adhesive polyelectrolyte with ethanolamine(EA)and poly-acrylic acid(PAA).The linear PAA was crosslinked by EA,forming a 3D network that stabilized the SnO_(2)nanoparticle dispersion.An organic–inorganic hybrid ETL is developed by introducing the cross-linked PAA-EA into SnO_(2)ETL,which prevents nano particle agglomeration and facilitates uniform SnO_(2)film formation with fewer defects.Additionally,the PAA-EA-modified SnO_(2)facilitated a uniform and compact perovskite film,enhancing the interface contact and carrier transport.Consequently,the PAA-EA-modified PSCs exhibited excellent PCE of 24.34%and 22.88%with high reproducibility for areas of 0.045 and 1.00 cm~2,respectively.Notably,owing to structure reinforce effect of PAA-EA in SnO_(2)ETL,flexible device demonstrated an impressive PCE of 23.34%while maintaining 90.1%of the initial PCE after 10,000 bending cycles with a bending radius of 5 mm.This successful approach of polyelectrolyte reinforced hybrid organic–inorganic ETL displays great potential for flexible,large-area PSCs application.展开更多
The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycli...The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycling performance and extending service life of LIBs.Here,we report a novel cross-linked network SHSPE(PDDP)containing hydrogen bonds and dynamic disulfide bonds with excellent self-healing properties and nonflammability.The combination of hydrogen bonding between urea groups and the metathesis reaction of dynamic disulfide bonds endows PDDP with rapid self-healing capacity at 28°C without external stimulation.Furthermore,the addition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(EMIMTFSI)improves the ionic conductivity(1.13×10^(−4)S cm^(−1)at 28°C)and non-flammability of PDDP.The assembled Li/PDDP/LiFePO_(4)cell exhibits excellent cycling performance with a discharge capacity of 137 mA h g^(−1)after 300 cycles at 0.2 C.More importantly,the self-healed PDDP can recover almost the same ionic conductivity and cycling performance as the original PDDP.展开更多
Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)partic...Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)particleboard coating was then prepared by reacting raw tannin extract with aminated tannin extract and thus cross-linking the two by substituting tannin’s hydroxyl groups with the–NH_(2)groups on the aminated tannin to form–NH-bridges between the two.The resulting particleboard coating gave encouraging results when pressed at 180℃for 3 min.Conversely,the system in which tannin was reacted/cross-liked with urea(ATU)by a similar amination reaction did not perform as well as the ATT system,and this even when a higher curing temperature and longer hot press time were used.In particular its water repellence was worse probably due to the presence of urea and such a system with lower reactivity.Nonetheless,substituting the tannin–OHs with the urea–NH_(2)groups appeared to also take place.ATT gave better results than ATU as regards water repellence and mechanical resistance as shown by the cross cut test.The ATT system was shown to be between 95%and 98%biosourced.The difference appeared to be due,by TMA analysis,to the much faster formation of the ATT hardened network leading to a better cross-linked polymer coating.The chemical species formed for both the ATT and ATU system were studied by MALDI ToF and CP MAS^(13)C NMR.展开更多
To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb)....To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.展开更多
Triosephosphate isomerase(TPI)is an enzyme that functions in plant energy production,accumulation,and conversion.To understand its function in maize,we characterized a maize TPI mutant,zmtpi4.In comparison to the wild...Triosephosphate isomerase(TPI)is an enzyme that functions in plant energy production,accumulation,and conversion.To understand its function in maize,we characterized a maize TPI mutant,zmtpi4.In comparison to the wild type,zmtpi4 mutants showed altered ear development,reduced kernel weight and starch content,modified starch granule morphology,and altered amylose and amylopectin content.Protein,ATP,and pyruvate contents were reduced,indicating ZmTPI4 was involved in glycolysis.Although subcellular localization confirmed ZmTPI4 as a cytosolic rather than a plastid isoform of TPI,the zmtpi4 mutant showed reduced leaf size and chlorophyll content.Overexpression of ZmTPI4 in Arabidopsis led to enlarged leaves and increased seed weight,suggesting a positive regulatory role of ZmTPI4 in kernel weight and starch content.We conclude that ZmTPI4 functions in maize kernel development,starch synthesis,glycolysis,and photosynthesis.展开更多
“Pinhão”, the seed of Araucaria angustifolia, is an important food, being part of the eating habits of Indigenous communities. In this study, we evaluated the oligosaccharide content, resistant starch and the g...“Pinhão”, the seed of Araucaria angustifolia, is an important food, being part of the eating habits of Indigenous communities. In this study, we evaluated the oligosaccharide content, resistant starch and the growth of probiotic bacteria. GF4 (1-fructofuranosylnystose) was the main fructo-oligosaccharides found, in higher contents compared to other food sources. Maltooligosaccharides (MOS) represented the main part of the oligosaccharides profile of Brazilian pine seeds. In descending order of importance was maltoheptaose (G7), maltohexose (G6) and maltotriose (G3). The starches from the variety Sanct josephi presented the highest amount of resistant starch that could stimulate probiotic strains, mainly B. breve and L. plantarum, and may have a prebiotic effect, potentially promoting health benefits. This study advances the understanding of the chemical composition of the main portion of the “pinhão” enhancing awareness of its potential as a healthy food source, contributing to different uses and indirectly with the species preservation.展开更多
The seed storage materials accumulate during seed development,and are essential for seed germination and seedling establishment.Here we employed two bi-parental populations of an F2:3 population developed from a cross...The seed storage materials accumulate during seed development,and are essential for seed germination and seedling establishment.Here we employed two bi-parental populations of an F2:3 population developed from a cross of improved 220(I220,small seeds with low starch)and PH4CV(large seeds with high starch),as well as recombinant-inbred lines(RILs)of X178(high starch)and its improved introgression line I178(low starch),to identify the genes that control seed storage materials.We identified a total of 12 QTLs for starch,protein and oil,which explained 3.44-10.79%of the phenotypic variances.Among them,qSTA2-1 identified in F2:3 and qSTA2-2 identified in the RILs partially overlapped at an interval of 7.314-9.554 Mb,and they explained 3.44-10.21%of the starch content variation,so they were selected for further study.Fine mapping of qSTA2-2 with the backcrossed populations of ^(I220)/PH4CV in each generation narrowed it down to a 199.7 kb interval that contains 14 open reading frames(ORFs).Transcriptomic analysis of developing seeds from the near-isogenic lines(NILs)of ^(I220)/PH4CV(BC_(5)F_(2))showed that only 11 ORFs were expressed in 20 days after pollination(DAP)seeds.Five of them were upregulated and six of them were downregulated in NIL^(I220),and the differentially expressed genes(DEGs)between NIL^(I220) and NIL^(PH4CV) were enriched in starch metabolism,hormone signal transduction and glycosaminoglycan degradation.Of the eleven NIL^(I220) differential expressed ORFs,ORF4(Zm00001d002260)and ORF5(Zm00001d002261)carry 75%protein sequence similarity,both encodes an glycolate oxidase,were the possible candidates of qSTA2-2.Further analysis and validation indicated that mutation of the qSTA2-2 locus resulted in the dysfunction of ABA accumulation,the embryo/endosperm ratio and the starch and hormone levels.展开更多
Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultiv...Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield.展开更多
The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle li...The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs.展开更多
Objective To investigate the efficacy of raw corn starch(RCS)in clinical management of insulinoma-induced hypoglycemia.Methods We retrospectively collected clinical data of insulinoma patients who received RCS-supplem...Objective To investigate the efficacy of raw corn starch(RCS)in clinical management of insulinoma-induced hypoglycemia.Methods We retrospectively collected clinical data of insulinoma patients who received RCS-supplemented diet preoperatively,and analyzed the therapeutic effects of the RCS intervention on blood glucose control,weight change,and its adverse events.Results The study population consisted of 24 cases of insulinoma patients,7 males and 17 females,aged 46.08±14.15 years.Before RCS-supplemented diet,all patients had frequent hypoglycemic episodes(2.51±3.88 times/week),concurrent with neuroglycopenia(in 83.3% of patients)and autonomic manifestations(in 75.0% of patients),with the median fasting blood glucose(FBG)of 2.70(interquartile range[IQR]:2.50-2.90)mmol/L.The patients'weight increased by 0.38(IQR:0.05-0.65)kg per month,with 8(33.3%)cases developing overweight and 7(29.2%)cases developing obesity.All patients maintained the RCS-supplemented diet until they underwent tumor resection(23 cases)and transarterial chemoembolization for liver metastases(1 case).For 19 patients receiving RCS throughout the day,the median FBG within one week of nutritional management was 4.30(IQR:3.30-5.70)mmol/L,which was a significant increase compared to pre-nutritional level[2.25(IQR:1.60-2.90)mmol/L;P<0.001].Of them,10 patients receiving RCS throughout the day for over four weeks had sustained improvement in FBG compared to pre-treatment[3.20(IQR:2.60-3.95)mmol/L vs.2.15(IQR:1.83-2.33)mmol/L;P<0.001].Five patients who received RCS only at night also had a significant increase in FBG within one week of nutritional management[3.50(IQR:2.50-3.65)mmol/L vs.2.20(IQR:1.80-2.60)mmol/L;P<0.001],but only one patient who continued to receive RCS for over four weeks did not have a significant improvement in FBG.No improvement in weight gain was observed upon RCS supplementation.Mild diarrhea(2 cases)and flatulence(1 case)occurred,and were relieved by reduction of RCS dose.Conclusion The RCS-supplemented diet is effective in controlling insulinoma-induced hypoglycemia.展开更多
Obesity and type 2 diabetes are widespread throughout the world, especially in developed countries. Starch is an important part of human staple food, the modulating of starch digestibility is conducive to reducing pos...Obesity and type 2 diabetes are widespread throughout the world, especially in developed countries. Starch is an important part of human staple food, the modulating of starch digestibility is conducive to reducing postprandial blood glucose levels and alleviating the chronic disease caused by high caloric intake. The digestion properties of starch are correlated with its structural features, including crystallization, amylose/amylopectin ratio, non-starch components, etc. Among the modified methods applied to regulate starch digestibility, non-thermal processing techniques(NTPT) receive extensive attention due to the characteristics of safety, environmental friendliness and high efficiency. The influence and mechanism of NTPT on the digestion properties of starch are discussed in this review, including ultrasounds, high pressure, γ-irradiation, etc. NTPT induces the alternation of morphological and structural characteristics of native starch, changing their sensitivity to enzymes. The effects of NTPT on the digestibility of starch are highly related to the processing parameters and structure characteristics of native starch. The review shows that NTPT is an effective way to modulate the digestion properties of starch and prevent people from suffering from chronic diseases such as obesity and type 2 diabetes.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.22325405,22321002,22279153)Liaoning Revitalization Talents Program(XLYC1807207,XLYC2203134)DICP I202104。
文摘Solid polymer electrolytes(SPEs)have become increasingly important in advanced lithium-ion batteries(LIBs)due to their improved safety and mechanical properties compared to organic liquid electrolytes.Cross-linked polymers have the potential to further improve the mechanical property without trading off Li-ion conductivity.In this study,focusing on a recently developed cross-linked SPE,i.e.,the one based on poly(vinylene carbonate)-poly(ethylene oxide)cross-linked network(PVCN),we used solid-state nuclear magnetic resonance(NMR)techniques to investigate the fundamental interaction between the chain segments and Li ions,as well as the lithium-ion motion.By utilizing homonuclear/heteronuclear correlation,CP(cross-polarization)kinetics,and spin-lattice relaxation experiments,etc.,we revealed the structural characteristics and their relations to lithium-ion mobilities.It is found that the network formation prevents poly(ethylene oxide)chains from crystallization,which could create sufficient space for segmental tumbling and Li-ion co nductio n.As such,the mechanical property is greatly improved with even higher Li-ion mobilities compared to the poly(vinylene carbonate)or poly(ethylene oxide)based SPE analogues.
基金supported by the National Natural Science Foundation of China(52162030)the Yunnan Major Scientific and Technological Projects(202202AG050003)+4 种基金the Key Research and Development Program of Yunnan Province(202103AA080019)the Scientific Research Foundation of Kunming University of Science and Technology(20220122)the Graduate Student Top Innovative Talent Program of Kunming University of Science and Technology(CA23107M139A)the Analysis and Testing Foundation of Kunming University of Science and Technology(2023T20220122)the Shenzhen Science and Technology Program(KCXST20221021111201003)。
文摘High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
基金jointly supported by two research grants(R202016 and R202017)from Beijing Normal University-Hong Kong Baptist University United International College,China。
文摘In this study,we isolated starches from non-traditional sources,including quinoa,lentil,arrowhead,gorgon fruit,sorghum,chickpea,proso millet,and purple potato and investigated their morphology,physicochemical,and functional properties.Significant differences in starch particle morphology,swelling power,solubility,syneresis,crystalline pattern,and pasting viscosity were observed among the starches from these nontraditional sources.Further,all these isolated starches had unique properties because of their characteristic distinct granules when seen under scanning electron microscopy(SEM).The amylose content of the isolated starches shown significant difference(P<0.05),and the values ranged between 11.46%and 37.61%.Results demonstrated that the isolated starches contained between 79.82%to 86.56%starch,indicating that the isolated starches had high purity.X-ray diffraction(XRD)patterns of starches isolated from sorghum,proso millet,quinoa,purple potato,and gorgon fruit presented A-type diffraction pattern;while lentil seeds,arrowhead,and chickpea starches presented C-type diffraction pattern.Overall,these results will promote the development of products based on starch isolated from non-traditional starches.
基金the Science and Technology Department of Henan Province of China(Grant No.222102240060 and 222300420541)the Education Department of Henan Province of China(Grant No.22B430023)supported by the Program for Innovative Research Team(in Science and Technology)in University of Henan Province(Grant No.23IRTSTHN009)。
文摘Lithium-metal anodes(LMAs)have been recognized as the ultimate anodes for next-generation batteries with high energy density,but stringent assembly-environment conditions derived from the poor moisture stability dramatically hinder the transformation of LMAs from laboratory to industry.Herein,an in situ formed cross-linked polymer layer on LMAs is designed and constructed by a facile thiol-acrylate click chemistry reaction between poly(ethylene glycol)diacrylate(PEGDA)and the crosslinker containing multi thiol groups under UV irradiation.Owing to the hydrophobic nature of the layer,the treated LMAs demonstrate remarkable humid stability for more than 3 h in ambient air(70%relative humidity).The coating humid-resistant protective layer also possesses a dual-functional characterization as solid polymer electrolytes by introducing lithium bis(trifluoromethanesulfonyl)imide in the system in advance.The intimate contact between the polymer layer and LMAs reduces interfacial resistance in the assembled Li/LiFePO_(4)or Li/LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)full cell effectively,and endows the cell with an outstanding cycle performance.
基金funding supports from the Natural Science Basis Research Plan in Shaanxi Province of China(2019JLZ-10)the Independent Research Project of National Key Laboratory of Electrical Insulation and Power Equipment(EIPE19111)。
文摘Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices.
基金the National Natural Science Foundation of China(31701546)the Fundamental Research Funds for the Central Universities of China(2019ZD40)+5 种基金the 111 Project(B17018)for financial supportPearl River Talent Recruitment Program of Guangdong Province(2017GC010229)the Pearl River Nova Program of Guangzhou(201906010079)the National Natural Science Foundation of China(32001691)the special fund for scientific innovation strategyconstruction of high-level academy of agriculture science(R2019YJYB1001)the Application-oriented Projects of Guangdong Province(2017B020232002)。
文摘Natural foods,such as whole pulses,are recommended in the dietary guidelines of the US and China.The plant cell wall structure in whole pulses has important implications for the nutritional functionalities of starch.In this study,garbanzo bean cells with varying degrees of cell wall integrity were subjected to dry heat treatment(DHT)and used to elucidate the food structure-starch digestion properties of pulse food.The morphological features suggested that all cell samples do not exhibit remarkable changes after being subjected to DHT.Molecular rearrangement and the crystallite disruption of starch granules entrapped in cells occurred during DHT as assessed by the crystal structure and thermal properties.DHT decreased the inhibitory effects of enzymes of both the soluble and insoluble components,but the digestion rate and extent of slightly and highly damaged cell samples did not exhibit significant differences compared with their native counterparts.We concluded that the starch digestion of pulse cotyledon cells is primarily determined by the intactness of the cellular structure.This study reveals the role of food structure on the ability to retain the desirable nutritional properties of starch after subjection to physical modification.
基金funded by the Indonesia Toray Science Foundation(No.:001/I/ITSF/SEK/2019).
文摘This research paper describes the synthesis of thermo-reversible cross-linking of sago starch by grafting a furan pendant group(methyl 2-furoate)onto the starch backbone,followed by a Diels-Alder(DA)reaction of the furan functional group with 1,1′-(methylenedi-4,1-phenylene)bismaleimide(BM).The proof of principles was provided by FTIR and 1H-NMR analyses.The relevant FTIR peaks are the carbonyl peak(υC=O sym)at 1721 cm^(−1);the two peaks appeared after DA cross-linking,i.e.,at 1510 cm^(−1)(corresponding toυCH=CH BM aromatic rings,stretching vibrations),and at 1173 cm^(−1)(assigned to cycloadduct(C-O-C,δDA ring))while the^(1)H-NMR result shows evidence for the presence of a furan ring in the starch matrices(in the range ofδ6.3-7.5 ppm).The crosslinked starch product is indeed thermally reversible,as is evident from the appearance of exothermal(DA,temperature range of 50℃-70℃)and endothermal(retro DA,temperature range of 125℃-150℃)transitions in the DSC thermograms.This paper not only proves the thermal reversibility but also demonstrates that the final product properties(chemical,morphology,and thermal stability)can be tuned by varying the annealing temperature,BM intake,and reaction time.
基金Coordenac¸a˜o de Aperfei-c¸oamento de Pessoal de Nı´vel Superior(CAPES)and Fundac¸a˜o de Amparo a`Pesquisa do Estado de Sa˜o Paulo(FAPESP)is acknowledged.F.M.C.thanks FAPESP for a M.Sci.scholarship.
文摘Cross-linked pectin/high amylose mixtures were evaluated as a new excipient for matrix tablets formulations,since the mixing of polymers and cross-linking reaction represent rational tools to reach materials with modulated and specific properties that meet specific therapeutic needs.Objective:In this work the influence of polymer ratio and cross-linking process on the swelling and the mechanism driving the drug release from swellable matrix tablets prepared with this excipient was investigated.Methods:Cross-linked samples were characterized by their micromeritic properties(size and shape,density,angle of repose and flow rate)and liquid uptake ability.Matrix tablets were evaluated according their physical properties and the drug release rates and mechanisms were also investigated.Results:Cross-linked samples demonstrated size homogeneity and irregular shape,with liquid uptake ability insensible to pH.Cross-linking process of samples allowed the control of drug release rates and the drug release mechanism was influenced by both polymer ratio and cross-linking process.The drug release of samples with minor proportion of pectin was driven by an anomalous transport and the increase of the pectin proportion contributed to the erosion of the matrix.Conclusion:The cross-linked mixtures of high amylose and pectin showed a suitable excipient for slowing the drug release rates.
基金supported by the National Key R&D Program of China(2019YFB1503201)the National Natural Science Foundation of China(52172238,52102304,51902264)+3 种基金the Natural Science Foundation of Shanxi Province(2020JM-093)the Open project of Shaanxi Laboratory of Aerospace Power(2021SXSYS-01-03)the Science Technology and Innovation Commission of Shenzhen Municipality(JCYJ20190807111605472)the Fundamental Research Funds for the Central Universities(3102019JC0005,5000220118)。
文摘SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and adhesive polyelectrolyte with ethanolamine(EA)and poly-acrylic acid(PAA).The linear PAA was crosslinked by EA,forming a 3D network that stabilized the SnO_(2)nanoparticle dispersion.An organic–inorganic hybrid ETL is developed by introducing the cross-linked PAA-EA into SnO_(2)ETL,which prevents nano particle agglomeration and facilitates uniform SnO_(2)film formation with fewer defects.Additionally,the PAA-EA-modified SnO_(2)facilitated a uniform and compact perovskite film,enhancing the interface contact and carrier transport.Consequently,the PAA-EA-modified PSCs exhibited excellent PCE of 24.34%and 22.88%with high reproducibility for areas of 0.045 and 1.00 cm~2,respectively.Notably,owing to structure reinforce effect of PAA-EA in SnO_(2)ETL,flexible device demonstrated an impressive PCE of 23.34%while maintaining 90.1%of the initial PCE after 10,000 bending cycles with a bending radius of 5 mm.This successful approach of polyelectrolyte reinforced hybrid organic–inorganic ETL displays great potential for flexible,large-area PSCs application.
基金supported by R&D Program of Power Batteries with Low Temperature and High Energy,Science and Technology Bureau of Changchun(19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal University+1 种基金the Fundamental Research Funds for the Central Universities(2412020FZ007,2412020FZ008)National Natural Science Foundation of China(22102020)
文摘The self-healing solid polymer electrolytes(SHSPEs)can spontaneously eliminate mechanical damages or micro-cracks generated during the assembly or operation of lithium-ion batteries(LIBs),significantly improving cycling performance and extending service life of LIBs.Here,we report a novel cross-linked network SHSPE(PDDP)containing hydrogen bonds and dynamic disulfide bonds with excellent self-healing properties and nonflammability.The combination of hydrogen bonding between urea groups and the metathesis reaction of dynamic disulfide bonds endows PDDP with rapid self-healing capacity at 28°C without external stimulation.Furthermore,the addition of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(EMIMTFSI)improves the ionic conductivity(1.13×10^(−4)S cm^(−1)at 28°C)and non-flammability of PDDP.The assembled Li/PDDP/LiFePO_(4)cell exhibits excellent cycling performance with a discharge capacity of 137 mA h g^(−1)after 300 cycles at 0.2 C.More importantly,the self-healed PDDP can recover almost the same ionic conductivity and cycling performance as the original PDDP.
基金supported by a grant of the French Agence Nationale de la Recherche(ANR)in the Ambit of the Laboratory of Excellence(Labex)ARBRE.This work was also supported by“The 111 Project(D21027)”.
文摘Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many,if not all of the tannin hydroxyl groups with–NH_(2)groups.A tannin-aminated tannin(ATT)particleboard coating was then prepared by reacting raw tannin extract with aminated tannin extract and thus cross-linking the two by substituting tannin’s hydroxyl groups with the–NH_(2)groups on the aminated tannin to form–NH-bridges between the two.The resulting particleboard coating gave encouraging results when pressed at 180℃for 3 min.Conversely,the system in which tannin was reacted/cross-liked with urea(ATU)by a similar amination reaction did not perform as well as the ATT system,and this even when a higher curing temperature and longer hot press time were used.In particular its water repellence was worse probably due to the presence of urea and such a system with lower reactivity.Nonetheless,substituting the tannin–OHs with the urea–NH_(2)groups appeared to also take place.ATT gave better results than ATU as regards water repellence and mechanical resistance as shown by the cross cut test.The ATT system was shown to be between 95%and 98%biosourced.The difference appeared to be due,by TMA analysis,to the much faster formation of the ATT hardened network leading to a better cross-linked polymer coating.The chemical species formed for both the ATT and ATU system were studied by MALDI ToF and CP MAS^(13)C NMR.
基金supported by the National Key Research and Development Program of China(2023YFD1202901)the China Agriculture Research System of MOF and MARA(CARS-02-06)the Key Area Research and Development Program of Guangdong Province(2018B020202008).
文摘To improve the amylose content(AC)and resistant starch content(RSC)of maize kernel starch,we employed the CRISPR/Cas9 system to create mutants of starch branching enzyme I(SBEI)and starch branching enzyme IIb(SBEIIb).A frameshift mutation in SBEI(E1,a nucleotide insertion in exon 6)led to plants with higher RSC(1.07%),lower hundred-kernel weight(HKW,24.71±0.14 g),and lower plant height(PH,218.50±9.42 cm)compared to the wild type(WT).Like the WT,E1 kernel starch had irregular,polygonal shapes with sharp edges.A frameshift mutation in SBEIIb(E2,a four-nucleotide deletion in exon 8)led to higher AC(53.48%)and higher RSC(26.93%)than that for the WT.E2 kernel starch was significantly different from the WT regarding granule morphology,chain length distribution pattern,X-ray diffraction pattern,and thermal characteristics;the starch granules were more irregular in shape and comprised typical B-type crystals.Mutating SBEI and SBEIIb(E12)had a synergistic effect on RSC,HKW,PH,starch properties,and starch biosynthesis-associated gene expression.SBEIIa,SS1,SSIIa,SSIIIa,and SSIIIb were upregulated in E12 endosperm compared to WT endosperm.This study lays the foundation for rapidly improving the starch properties of elite maize lines.
基金supported by the Major Public Welfare Projects of Henan Province(201300111100 to Yuling Li)Zhongyuan Scholars in Henan Province(22400510003 to Yuling Li)+2 种基金Tackle Program of Agricultural Seed in Henan Province(2022010201 to Yuling Li)Technical System of Maize Industry in Henan Province(HARS-2202-S to Yuling Li)State Key Laboratory of Wheat and Maize Crop Science(SKL2023ZZ05)。
文摘Triosephosphate isomerase(TPI)is an enzyme that functions in plant energy production,accumulation,and conversion.To understand its function in maize,we characterized a maize TPI mutant,zmtpi4.In comparison to the wild type,zmtpi4 mutants showed altered ear development,reduced kernel weight and starch content,modified starch granule morphology,and altered amylose and amylopectin content.Protein,ATP,and pyruvate contents were reduced,indicating ZmTPI4 was involved in glycolysis.Although subcellular localization confirmed ZmTPI4 as a cytosolic rather than a plastid isoform of TPI,the zmtpi4 mutant showed reduced leaf size and chlorophyll content.Overexpression of ZmTPI4 in Arabidopsis led to enlarged leaves and increased seed weight,suggesting a positive regulatory role of ZmTPI4 in kernel weight and starch content.We conclude that ZmTPI4 functions in maize kernel development,starch synthesis,glycolysis,and photosynthesis.
文摘“Pinhão”, the seed of Araucaria angustifolia, is an important food, being part of the eating habits of Indigenous communities. In this study, we evaluated the oligosaccharide content, resistant starch and the growth of probiotic bacteria. GF4 (1-fructofuranosylnystose) was the main fructo-oligosaccharides found, in higher contents compared to other food sources. Maltooligosaccharides (MOS) represented the main part of the oligosaccharides profile of Brazilian pine seeds. In descending order of importance was maltoheptaose (G7), maltohexose (G6) and maltotriose (G3). The starches from the variety Sanct josephi presented the highest amount of resistant starch that could stimulate probiotic strains, mainly B. breve and L. plantarum, and may have a prebiotic effect, potentially promoting health benefits. This study advances the understanding of the chemical composition of the main portion of the “pinhão” enhancing awareness of its potential as a healthy food source, contributing to different uses and indirectly with the species preservation.
基金supported by grants from the STI 2030-Major Projects,China(2022ZD040190101,2022ZD040190502)the National Natural Science Foundation of China(32072130,32272162 and 31701437)+1 种基金the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2023-64)the 2115 Talent Development Program of China Agricultural University,and the China Agriculture Research System(CARS-02-13)。
文摘The seed storage materials accumulate during seed development,and are essential for seed germination and seedling establishment.Here we employed two bi-parental populations of an F2:3 population developed from a cross of improved 220(I220,small seeds with low starch)and PH4CV(large seeds with high starch),as well as recombinant-inbred lines(RILs)of X178(high starch)and its improved introgression line I178(low starch),to identify the genes that control seed storage materials.We identified a total of 12 QTLs for starch,protein and oil,which explained 3.44-10.79%of the phenotypic variances.Among them,qSTA2-1 identified in F2:3 and qSTA2-2 identified in the RILs partially overlapped at an interval of 7.314-9.554 Mb,and they explained 3.44-10.21%of the starch content variation,so they were selected for further study.Fine mapping of qSTA2-2 with the backcrossed populations of ^(I220)/PH4CV in each generation narrowed it down to a 199.7 kb interval that contains 14 open reading frames(ORFs).Transcriptomic analysis of developing seeds from the near-isogenic lines(NILs)of ^(I220)/PH4CV(BC_(5)F_(2))showed that only 11 ORFs were expressed in 20 days after pollination(DAP)seeds.Five of them were upregulated and six of them were downregulated in NIL^(I220),and the differentially expressed genes(DEGs)between NIL^(I220) and NIL^(PH4CV) were enriched in starch metabolism,hormone signal transduction and glycosaminoglycan degradation.Of the eleven NIL^(I220) differential expressed ORFs,ORF4(Zm00001d002260)and ORF5(Zm00001d002261)carry 75%protein sequence similarity,both encodes an glycolate oxidase,were the possible candidates of qSTA2-2.Further analysis and validation indicated that mutation of the qSTA2-2 locus resulted in the dysfunction of ABA accumulation,the embryo/endosperm ratio and the starch and hormone levels.
基金This work was supported by the Project of Natural Science Foundation of Anhui Province,China(2008085qc118)the National Natural Science Foundation of China(U19A2021)+1 种基金the Major Science and Technology Special Project of Anhui Province,China(S202003a06020035)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP).
文摘Global climate change is characterized by asymmetric warming,i.e.,greater temperature increases in winter,spring,and nighttime than in summer,autumn,and daytime.Field experiments were conducted using four wheat cultivars,namely‘Yangmai 18’(YM18),‘Sumai 188’(SM188),‘Yannong 19’(YN19),and‘Annong 0711’(AN0711),in the two growing seasons of 2019-2020 and 2020-2021,with passive night warming during different periods in the early growth stage.The treatments were night warming during the tillering-jointing(NW_(T-J)),jointing-booting(NWJ-B),and booting-anthesis(NWB-A)stages,with ambient temperature(NN)as the control.The effects of night warming during different stages on wheat yield formation were investigated by determining the characteristics of dry matter accumulation and translocation,as well as sucrose and starch accumulation in wheat grains.The wheat yields of all four cultivars were significantly higher in NW_(T-J)than in NN in the 2-year experiment.The yield increases of semi-winter cultivars YN19 and AN0711 were greater than those of spring cultivars YM18 and SM188.Treatment NW_(T-J)increased wheat yield mainly by increasing the 1,000-grain weight and the number of fertile spikelets,and it increased dry matter accumulation in various organs of wheat at the anthesis and maturity stages by increasing the growth rate at the vegetative growth stage.The flag leaf and spike showed the largest increases in dry matter accumulation.NW_(T-J)also increased the grain sucrose and starch contents in the early and middle grain-filling stages,promoting yield formation.Overall,night warming between the tillering and jointing stages increased the pre-anthesis growth rate,and thus,wheat dry matter production,which contributed to an increase in wheat yield.
基金financially supported by the National Natural Science Foundation of China(Nos.U20A20246 and 51872108)the Fundamental Research Funds for the Central Universitiesthe Advanced Talents Incubation Program of Hebei University(521100221039)
文摘The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs.
基金supported by the National High Level Hospital Clinical Research Fund(2022-PUMCH-A-146)the National Natural Science Foundation of China(72074222)the Na-tional Key Research and Development Program of China(2020YFC2005005).
文摘Objective To investigate the efficacy of raw corn starch(RCS)in clinical management of insulinoma-induced hypoglycemia.Methods We retrospectively collected clinical data of insulinoma patients who received RCS-supplemented diet preoperatively,and analyzed the therapeutic effects of the RCS intervention on blood glucose control,weight change,and its adverse events.Results The study population consisted of 24 cases of insulinoma patients,7 males and 17 females,aged 46.08±14.15 years.Before RCS-supplemented diet,all patients had frequent hypoglycemic episodes(2.51±3.88 times/week),concurrent with neuroglycopenia(in 83.3% of patients)and autonomic manifestations(in 75.0% of patients),with the median fasting blood glucose(FBG)of 2.70(interquartile range[IQR]:2.50-2.90)mmol/L.The patients'weight increased by 0.38(IQR:0.05-0.65)kg per month,with 8(33.3%)cases developing overweight and 7(29.2%)cases developing obesity.All patients maintained the RCS-supplemented diet until they underwent tumor resection(23 cases)and transarterial chemoembolization for liver metastases(1 case).For 19 patients receiving RCS throughout the day,the median FBG within one week of nutritional management was 4.30(IQR:3.30-5.70)mmol/L,which was a significant increase compared to pre-nutritional level[2.25(IQR:1.60-2.90)mmol/L;P<0.001].Of them,10 patients receiving RCS throughout the day for over four weeks had sustained improvement in FBG compared to pre-treatment[3.20(IQR:2.60-3.95)mmol/L vs.2.15(IQR:1.83-2.33)mmol/L;P<0.001].Five patients who received RCS only at night also had a significant increase in FBG within one week of nutritional management[3.50(IQR:2.50-3.65)mmol/L vs.2.20(IQR:1.80-2.60)mmol/L;P<0.001],but only one patient who continued to receive RCS for over four weeks did not have a significant improvement in FBG.No improvement in weight gain was observed upon RCS supplementation.Mild diarrhea(2 cases)and flatulence(1 case)occurred,and were relieved by reduction of RCS dose.Conclusion The RCS-supplemented diet is effective in controlling insulinoma-induced hypoglycemia.
基金financial supported by the Program of the National Natural Science Foundation of China (31972034)the National Youth Top-notch Talent Support Program of China (201902)。
文摘Obesity and type 2 diabetes are widespread throughout the world, especially in developed countries. Starch is an important part of human staple food, the modulating of starch digestibility is conducive to reducing postprandial blood glucose levels and alleviating the chronic disease caused by high caloric intake. The digestion properties of starch are correlated with its structural features, including crystallization, amylose/amylopectin ratio, non-starch components, etc. Among the modified methods applied to regulate starch digestibility, non-thermal processing techniques(NTPT) receive extensive attention due to the characteristics of safety, environmental friendliness and high efficiency. The influence and mechanism of NTPT on the digestion properties of starch are discussed in this review, including ultrasounds, high pressure, γ-irradiation, etc. NTPT induces the alternation of morphological and structural characteristics of native starch, changing their sensitivity to enzymes. The effects of NTPT on the digestibility of starch are highly related to the processing parameters and structure characteristics of native starch. The review shows that NTPT is an effective way to modulate the digestion properties of starch and prevent people from suffering from chronic diseases such as obesity and type 2 diabetes.