An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic perf...An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic performance. Notably, the performance of the output error is confined in an envelope characterized by exponential convergence, leading to convergence to zero. This feature ensures a prompt response from admittance control and establishes a reliable safety framework for interactions. Simulation results provide practical insights,demonstrating the viability of the control scheme proposed in this paper.展开更多
The multimodal admittance method and its improvement are presented to deal with various aspects in underwater acoustics,mostly for the sound propagation in inhomogeneous waveguides with sound-speed profiles,arbitrary-...The multimodal admittance method and its improvement are presented to deal with various aspects in underwater acoustics,mostly for the sound propagation in inhomogeneous waveguides with sound-speed profiles,arbitrary-shaped liquid-like scatterers,and range-dependent environments.In all cases,the propagation problem governed by the Helmholtz equation is transformed into initial value problems of two coupled first-order evolution equations with respect to the modal components of field quantities(sound pressure and its derivative),by projecting the Helmholtz equation on a constructed orthogonal and complete local basis.The admittance matrix,which is the modal representation of Direchlet-to-Neumann operator,is introduced to compute the first-order evolution equations with no numerical instability caused by evanescent modes.The fourth-order Magnus scheme is used for the numerical integration of differential equations in the numerical implementation.The numerical experiments of sound field in underwater inhomogeneous waveguides generated by point sources are performed.Besides,the numerical results computed by simulation software COMSOL Multiphysics are given to validate the correction of the multimodal admittance method.It is shown that the multimodal admittance method is an efficient and stable numerical method to solve the wave propagation problem in inhomogeneous underwater waveguides with sound-speed profiles,liquid-like scatterers,and range-dependent environments.The extension of the method to more complicated waveguides such as horizontally stratified waveguides is available.展开更多
Using bathymetry and altimetric gravity anomalies, a 1°×9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window...Using bathymetry and altimetric gravity anomalies, a 1°×9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1,and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium Te of 10–20 km, while Te increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and IndoAustralian plates.展开更多
The frequency dependence of admittance measurements (capacitance–voltage (C–V ) and conductance–voltage (G/ω–V )) of Au/SnO2 /n-Si (MOS) capacitors was investigated by taking into account the effects of t...The frequency dependence of admittance measurements (capacitance–voltage (C–V ) and conductance–voltage (G/ω–V )) of Au/SnO2 /n-Si (MOS) capacitors was investigated by taking into account the effects of the interface states (N ss ) and series resistance (Rs ) at room temperature. Admittance measurements were carried out in frequency and bias voltage ranges of 1 kHz–1 MHz and ( 5V)–(+9V), respectively. The values of N ss and R s were determined by using a conductance method and estimating from the admittance measurements of the MOS capacitors. At low frequencies, the interface states can follow the AC signal and yield excess capacitance and conductance. In addition, the parallel conductance (G p /ω) versus log(f) curves at various voltages include a peak due to the presence of interface states. It is observed that the N ss and their time constant (τ) range from 1.23 ×10 12 eV-1 ·cm-2 to 1.47 ×10 12 eV-1 ·cm-2 and from 7.29 ×10-5 s to 1.81 ×10-5s, respectively.展开更多
In this paper, by change of integration path in complex spectrum domain and by defining input admittance as the ratio of complex radiated power to amplitude of square of voltage across the gap, new expressions of admi...In this paper, by change of integration path in complex spectrum domain and by defining input admittance as the ratio of complex radiated power to amplitude of square of voltage across the gap, new expressions of admittance (valid for all frequencies ) of infinitely long cylindrical antenna with and without conducting ground are obtained. Meanwhile corresponding formulas of current distribution are derived in detail. Some numerical computations are also given.展开更多
The electric admittance of a compound system composed of a thickness-shear mode (TSM) quartz crystal resonator (QCR) and an array of surface viscoelastic micro-beams (MBs) is studied. The governing equations of ...The electric admittance of a compound system composed of a thickness-shear mode (TSM) quartz crystal resonator (QCR) and an array of surface viscoelastic micro-beams (MBs) is studied. The governing equations of the MBs are derived from the Timoshenko-beam theory in consideration of shear deformation. The electrical admittance is described directly in terms of the physical properties of the surface epoxy resin (SU-8) MBs from an electrically forced vibration analysis. It is found that both the inertia effect and the constraint effect of the MBs produce competitive influence on the resonant frequency and admittance of the compound QCR system. By further comparing the numerical results calculated from the Timoshenko-beam model with those from the Euler-beam model, the shear deformation is found to lead to some deviation of an admittance spectrum. The deviations are revealed to be evident around the admittance peak(s) and reach the maximum when a natural frequency of the MBs is identical to the fundamental frequency of the QCR. Besides, a higher order vibration mode of the MBs corresponds to a larger deviation at the resonance.展开更多
The dynamic signaling game-model is employed to study countermeasures of Q, U and C for supply-demand on financial market. As the game result, the mixed equilibrium of Q and U exists naturally without FRS. It is concl...The dynamic signaling game-model is employed to study countermeasures of Q, U and C for supply-demand on financial market. As the game result, the mixed equilibrium of Q and U exists naturally without FRS. It is concluded that FRS on market admittance is objective demand of financial market, also the rational management behavior of government FRSI. And in addition to the empirical criteria, the FRS agreements between FRSI and financial-institutions should be considered as one of advanced FRS techniques. These must cover:① the regulation conformed status investigation with sufficient frequency,② corresponding punitive measures with sufficient strength. Thus the information can be delivered FRSI have ensured only qualified and regulation-conformed financial-institutions could be allowed to enter. That could safeguard the steadiness of the financial market.展开更多
We report on the development of an electrical characterization admittance spectroscopy equipment and method based on an off-the-shelf lock-in detector that is cheap and yet highly sensitive. It is concluded that a con...We report on the development of an electrical characterization admittance spectroscopy equipment and method based on an off-the-shelf lock-in detector that is cheap and yet highly sensitive. It is concluded that a contacted constant-pressure electrode configuration is preferable. It was further determined that the temperature does not have great impact in the measured values, but relative humidity of air can be important, especially in the constant-gap electrode configuration. In-situ measurements are difficult since the coupling of the plant with the environment is of high importance. Another aspect is the cables;they are important in that they have to be terminated by their characteristic impedance (50 Ω?in our case) to avoid reflections that introduce artificial attenuation and phase shifts in the signal. We introduce a fingerprint plot type to be able to distinguish between various plants and other specimens, and can actually detect the aqueous state of a plant.展开更多
In this paper, a biquad filter configuration based on two voltage differencing transconductance amplifiers (VDTAs) as newly active elements and only two capacitors as passive elements is proposed which can realize vol...In this paper, a biquad filter configuration based on two voltage differencing transconductance amplifiers (VDTAs) as newly active elements and only two capacitors as passive elements is proposed which can realize voltage-mode low pass (LP), band pass (BP), high pass (HP), band reject (BR) and all pass (AP) filtering responses using three voltage inputs. Simultaneously, the same configuration can also be used to obtain LP, BP and HP filtering responses in transadmittance-mode. The proposed biquad is capable of providing electronic control of quality factor independent of pole frequency through single transconductance parameter (biasing current). It also offers the advantage of low active and passive sensitivity. To support the theoretical analysis, the PSPICE simulation of the proposed circuit is done using 0.18 μm CMOS technology from TSMC.展开更多
This paper studies radiation from circumferential slots on cylindrical waveguide by Poynting’s vector method. It can help us to find mutual admittance between two circumferential slots in an antenna array. The main a...This paper studies radiation from circumferential slots on cylindrical waveguide by Poynting’s vector method. It can help us to find mutual admittance between two circumferential slots in an antenna array. The main advantage of Poynting’s vector method is its accurate convergence to compute mutual admittance between two circumferential slots. The importance of this matter will be more salient while we want to compare it with other mutual admittances and also use it to optimize an antenna array.展开更多
For A∈CmΧn, if the sum of the elements in each row and the sum of the elements in each column are both equal to 0, then A is called an indeterminate admittance matrix. If A is an indeterminate admit...For A∈CmΧn, if the sum of the elements in each row and the sum of the elements in each column are both equal to 0, then A is called an indeterminate admittance matrix. If A is an indeterminate admittance matrix and a Hermitian matrix, then A is called a Hermitian indeterminate admittance matrix. In this paper, we provide two methods to study the least squares Hermitian indeterminate admittance problem of complex matrix equation (AXB,CXD)=(E,F), and give the explicit expressions of least squares Hermitian indeterminate admittance solution with the least norm in each method. We mainly adopt the Moore-Penrose generalized inverse and Kronecker product in Method I and a matrix-vector product in Method II, respectively.展开更多
Lots of factors have influence on the firing accuracy of automatic weapon. During firing,the movement state of gun-shoulder system can be varied due to the impulsion of powder gases and the impact of moving parts,resu...Lots of factors have influence on the firing accuracy of automatic weapon. During firing,the movement state of gun-shoulder system can be varied due to the impulsion of powder gases and the impact of moving parts,resulting in a gunpoint being deviated from initial value to decrease the firing accuracy of weapon. The development of intelligent controlling gun carriage for weapon system is necessary for reflect its automatic firing accuracy objectively. An electronic measuring system for measuring the receiving force and movement of gun-shoulder system under initiative state is built based on the characteristics of standing non-rest automatic weapon. The constitutes of measuring system and the correction method of shoulder receiving force are described,and the mechanical admittance function of gun-shoulder system is obtained using electronically measured data,the modal identification of admittance functions of gun-shoulder system is made by adopting the orthogonal component method,and the key difference between the passive state and initiative state of standing non-rest automatic weapon is discussed.展开更多
Distribution grid topology and admittance information are essential for system planning,operation,and protection.In many distribution grids,missing or inaccurate topology and admittance data call for efficient estimat...Distribution grid topology and admittance information are essential for system planning,operation,and protection.In many distribution grids,missing or inaccurate topology and admittance data call for efficient estimation methods.However,measurement data may be insufficient or contaminated with large noise,which will fundamentally limit the estimation accuracy.This work explores the theoretical precision limits of the topology and admittance estimation(TAE)problem with different measurement devices,noise levels,and numbers of measurements.On this basis,we propose a conservative progressive self-adaptive(CPS)algorithm to estimate the topology and admittance.The results on IEEE 33 and 141-bus systems validate that the proposed CPS method can approach the theoretical precision limits under various measurement settings.展开更多
The hybrid power-and voltage-based synchronization control method has shown potential for enhancing the stability of grid-forming(GFM)inverters.However,its effectiveness may be compromised if other control loops are n...The hybrid power-and voltage-based synchronization control method has shown potential for enhancing the stability of grid-forming(GFM)inverters.However,its effectiveness may be compromised if other control loops are not properly designed.To address the control-loop interactions,this paper presents a design-oriented analysis method for multiloop-controlled GFM inverters.The method begins by identifying the dominant oscillation modes through modal analysis.The sensitivities of damping ratios to control parameters are then determined for the dominant modes,which allows for characterization of control-loop interactions.A co-design method of GFM control is next developed based on the sensitivity analysis.Lastly,simulations and experimental results are presented to confirm the effectiveness of the method.展开更多
The wearable exoskeleton system is a typical strongly coupled human-robotic system.Human-robotic is the environment for each other.The two support each other and compete with each other.Achieving high human-robotic co...The wearable exoskeleton system is a typical strongly coupled human-robotic system.Human-robotic is the environment for each other.The two support each other and compete with each other.Achieving high human-robotic compatibility is the most critical technology for wearable systems.Full structural compatibility can improve the intrinsic safety of the exoskeleton,and precise intention understanding and motion control can improve the comfort of the exoskeleton.This paper first designs a physiologically functional bionic lower limb exoskeleton based on the study of bone and joint functional anatomy and analyzes the drive mapping model of the dual closedloop four-link knee joint.Secondly,an exoskeleton dual closed-loop controller composed of a position inner loop and a force outer loop is designed.The inner loop of the controller adopts the PID control algorithm,and the outer loop adopts the adaptive admittance control algorithm based on human-robot interaction force(HRI).The controller can adaptively adjust the admittance parameters according to the HRI to respond to dynamic changes in the mechanical and physical parameters of the human-robot system,thereby improving control compliance and the wearing comfort of the exoskeleton system.Finally,we built a joint simulation experiment platform based on SolidWorks/Simulink to conduct virtual prototype simulation experiments and recruited volunteers to wear rehabilitation exoskeletons to conduct related control experiments.Experimental results show that the designed physiologically functional bionic exoskeleton and adaptive admittance controller can significantly improve the accuracy of human-robotic joint motion tracking,effectively reducing human-machine interaction forces and improving the comfort and safety of the wearer.This paper proposes a dual-closed loop four-link knee joint exoskeleton and a variable admittance control method based on HRI,which provides a new method for the design and control of exoskeletons with high compatibility.展开更多
基金supported by the National Natural Science Foundation of China (6207319761933006)National International Science and Technology Cooperation Base on Railway Vehicle Operation Engineering of Beijing Jiaotong University (BMRV20KF08)。
文摘An adaptive control approach is presented in this paper for tracking desired trajectories in interactive manipulators. The controller design incorporates prescribed performance functions (PPFs) to improve dynamic performance. Notably, the performance of the output error is confined in an envelope characterized by exponential convergence, leading to convergence to zero. This feature ensures a prompt response from admittance control and establishes a reliable safety framework for interactions. Simulation results provide practical insights,demonstrating the viability of the control scheme proposed in this paper.
文摘The multimodal admittance method and its improvement are presented to deal with various aspects in underwater acoustics,mostly for the sound propagation in inhomogeneous waveguides with sound-speed profiles,arbitrary-shaped liquid-like scatterers,and range-dependent environments.In all cases,the propagation problem governed by the Helmholtz equation is transformed into initial value problems of two coupled first-order evolution equations with respect to the modal components of field quantities(sound pressure and its derivative),by projecting the Helmholtz equation on a constructed orthogonal and complete local basis.The admittance matrix,which is the modal representation of Direchlet-to-Neumann operator,is introduced to compute the first-order evolution equations with no numerical instability caused by evanescent modes.The fourth-order Magnus scheme is used for the numerical integration of differential equations in the numerical implementation.The numerical experiments of sound field in underwater inhomogeneous waveguides generated by point sources are performed.Besides,the numerical results computed by simulation software COMSOL Multiphysics are given to validate the correction of the multimodal admittance method.It is shown that the multimodal admittance method is an efficient and stable numerical method to solve the wave propagation problem in inhomogeneous underwater waveguides with sound-speed profiles,liquid-like scatterers,and range-dependent environments.The extension of the method to more complicated waveguides such as horizontally stratified waveguides is available.
基金supported financially by the Key Foundation of the Institute of Seismology,China Earthquake Administration (No. IS201506205)the National Natural Science Foundation of China (Nos. 41504017, 41204019, 41304003)
文摘Using bathymetry and altimetric gravity anomalies, a 1°×9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1,and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium Te of 10–20 km, while Te increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and IndoAustralian plates.
文摘The frequency dependence of admittance measurements (capacitance–voltage (C–V ) and conductance–voltage (G/ω–V )) of Au/SnO2 /n-Si (MOS) capacitors was investigated by taking into account the effects of the interface states (N ss ) and series resistance (Rs ) at room temperature. Admittance measurements were carried out in frequency and bias voltage ranges of 1 kHz–1 MHz and ( 5V)–(+9V), respectively. The values of N ss and R s were determined by using a conductance method and estimating from the admittance measurements of the MOS capacitors. At low frequencies, the interface states can follow the AC signal and yield excess capacitance and conductance. In addition, the parallel conductance (G p /ω) versus log(f) curves at various voltages include a peak due to the presence of interface states. It is observed that the N ss and their time constant (τ) range from 1.23 ×10 12 eV-1 ·cm-2 to 1.47 ×10 12 eV-1 ·cm-2 and from 7.29 ×10-5 s to 1.81 ×10-5s, respectively.
文摘In this paper, by change of integration path in complex spectrum domain and by defining input admittance as the ratio of complex radiated power to amplitude of square of voltage across the gap, new expressions of admittance (valid for all frequencies ) of infinitely long cylindrical antenna with and without conducting ground are obtained. Meanwhile corresponding formulas of current distribution are derived in detail. Some numerical computations are also given.
基金Project supported by the National Natural Science Foundation of China(Nos.11272127 and51435006)the Research Fund for the Doctoral Program of Higher Education of China(No.20130142110022)
文摘The electric admittance of a compound system composed of a thickness-shear mode (TSM) quartz crystal resonator (QCR) and an array of surface viscoelastic micro-beams (MBs) is studied. The governing equations of the MBs are derived from the Timoshenko-beam theory in consideration of shear deformation. The electrical admittance is described directly in terms of the physical properties of the surface epoxy resin (SU-8) MBs from an electrically forced vibration analysis. It is found that both the inertia effect and the constraint effect of the MBs produce competitive influence on the resonant frequency and admittance of the compound QCR system. By further comparing the numerical results calculated from the Timoshenko-beam model with those from the Euler-beam model, the shear deformation is found to lead to some deviation of an admittance spectrum. The deviations are revealed to be evident around the admittance peak(s) and reach the maximum when a natural frequency of the MBs is identical to the fundamental frequency of the QCR. Besides, a higher order vibration mode of the MBs corresponds to a larger deviation at the resonance.
基金Funded by National Nature Science Fund (Important Project No.79790130)
文摘The dynamic signaling game-model is employed to study countermeasures of Q, U and C for supply-demand on financial market. As the game result, the mixed equilibrium of Q and U exists naturally without FRS. It is concluded that FRS on market admittance is objective demand of financial market, also the rational management behavior of government FRSI. And in addition to the empirical criteria, the FRS agreements between FRSI and financial-institutions should be considered as one of advanced FRS techniques. These must cover:① the regulation conformed status investigation with sufficient frequency,② corresponding punitive measures with sufficient strength. Thus the information can be delivered FRSI have ensured only qualified and regulation-conformed financial-institutions could be allowed to enter. That could safeguard the steadiness of the financial market.
文摘We report on the development of an electrical characterization admittance spectroscopy equipment and method based on an off-the-shelf lock-in detector that is cheap and yet highly sensitive. It is concluded that a contacted constant-pressure electrode configuration is preferable. It was further determined that the temperature does not have great impact in the measured values, but relative humidity of air can be important, especially in the constant-gap electrode configuration. In-situ measurements are difficult since the coupling of the plant with the environment is of high importance. Another aspect is the cables;they are important in that they have to be terminated by their characteristic impedance (50 Ω?in our case) to avoid reflections that introduce artificial attenuation and phase shifts in the signal. We introduce a fingerprint plot type to be able to distinguish between various plants and other specimens, and can actually detect the aqueous state of a plant.
文摘In this paper, a biquad filter configuration based on two voltage differencing transconductance amplifiers (VDTAs) as newly active elements and only two capacitors as passive elements is proposed which can realize voltage-mode low pass (LP), band pass (BP), high pass (HP), band reject (BR) and all pass (AP) filtering responses using three voltage inputs. Simultaneously, the same configuration can also be used to obtain LP, BP and HP filtering responses in transadmittance-mode. The proposed biquad is capable of providing electronic control of quality factor independent of pole frequency through single transconductance parameter (biasing current). It also offers the advantage of low active and passive sensitivity. To support the theoretical analysis, the PSPICE simulation of the proposed circuit is done using 0.18 μm CMOS technology from TSMC.
文摘This paper studies radiation from circumferential slots on cylindrical waveguide by Poynting’s vector method. It can help us to find mutual admittance between two circumferential slots in an antenna array. The main advantage of Poynting’s vector method is its accurate convergence to compute mutual admittance between two circumferential slots. The importance of this matter will be more salient while we want to compare it with other mutual admittances and also use it to optimize an antenna array.
文摘For A∈CmΧn, if the sum of the elements in each row and the sum of the elements in each column are both equal to 0, then A is called an indeterminate admittance matrix. If A is an indeterminate admittance matrix and a Hermitian matrix, then A is called a Hermitian indeterminate admittance matrix. In this paper, we provide two methods to study the least squares Hermitian indeterminate admittance problem of complex matrix equation (AXB,CXD)=(E,F), and give the explicit expressions of least squares Hermitian indeterminate admittance solution with the least norm in each method. We mainly adopt the Moore-Penrose generalized inverse and Kronecker product in Method I and a matrix-vector product in Method II, respectively.
文摘Lots of factors have influence on the firing accuracy of automatic weapon. During firing,the movement state of gun-shoulder system can be varied due to the impulsion of powder gases and the impact of moving parts,resulting in a gunpoint being deviated from initial value to decrease the firing accuracy of weapon. The development of intelligent controlling gun carriage for weapon system is necessary for reflect its automatic firing accuracy objectively. An electronic measuring system for measuring the receiving force and movement of gun-shoulder system under initiative state is built based on the characteristics of standing non-rest automatic weapon. The constitutes of measuring system and the correction method of shoulder receiving force are described,and the mechanical admittance function of gun-shoulder system is obtained using electronically measured data,the modal identification of admittance functions of gun-shoulder system is made by adopting the orthogonal component method,and the key difference between the passive state and initiative state of standing non-rest automatic weapon is discussed.
基金funded by the Science and Technology Project of State Grid Corporation of China(5100-202199519A-0-5-ZN).
文摘Distribution grid topology and admittance information are essential for system planning,operation,and protection.In many distribution grids,missing or inaccurate topology and admittance data call for efficient estimation methods.However,measurement data may be insufficient or contaminated with large noise,which will fundamentally limit the estimation accuracy.This work explores the theoretical precision limits of the topology and admittance estimation(TAE)problem with different measurement devices,noise levels,and numbers of measurements.On this basis,we propose a conservative progressive self-adaptive(CPS)algorithm to estimate the topology and admittance.The results on IEEE 33 and 141-bus systems validate that the proposed CPS method can approach the theoretical precision limits under various measurement settings.
文摘The hybrid power-and voltage-based synchronization control method has shown potential for enhancing the stability of grid-forming(GFM)inverters.However,its effectiveness may be compromised if other control loops are not properly designed.To address the control-loop interactions,this paper presents a design-oriented analysis method for multiloop-controlled GFM inverters.The method begins by identifying the dominant oscillation modes through modal analysis.The sensitivities of damping ratios to control parameters are then determined for the dominant modes,which allows for characterization of control-loop interactions.A co-design method of GFM control is next developed based on the sensitivity analysis.Lastly,simulations and experimental results are presented to confirm the effectiveness of the method.
基金Supported by National Natural Science Foundation of China(Grant Nos.U23A20338,62103131 and 62203149)Hebei Provincial Natural Science Foundation(Grant No.E2022202171).
文摘The wearable exoskeleton system is a typical strongly coupled human-robotic system.Human-robotic is the environment for each other.The two support each other and compete with each other.Achieving high human-robotic compatibility is the most critical technology for wearable systems.Full structural compatibility can improve the intrinsic safety of the exoskeleton,and precise intention understanding and motion control can improve the comfort of the exoskeleton.This paper first designs a physiologically functional bionic lower limb exoskeleton based on the study of bone and joint functional anatomy and analyzes the drive mapping model of the dual closedloop four-link knee joint.Secondly,an exoskeleton dual closed-loop controller composed of a position inner loop and a force outer loop is designed.The inner loop of the controller adopts the PID control algorithm,and the outer loop adopts the adaptive admittance control algorithm based on human-robot interaction force(HRI).The controller can adaptively adjust the admittance parameters according to the HRI to respond to dynamic changes in the mechanical and physical parameters of the human-robot system,thereby improving control compliance and the wearing comfort of the exoskeleton system.Finally,we built a joint simulation experiment platform based on SolidWorks/Simulink to conduct virtual prototype simulation experiments and recruited volunteers to wear rehabilitation exoskeletons to conduct related control experiments.Experimental results show that the designed physiologically functional bionic exoskeleton and adaptive admittance controller can significantly improve the accuracy of human-robotic joint motion tracking,effectively reducing human-machine interaction forces and improving the comfort and safety of the wearer.This paper proposes a dual-closed loop four-link knee joint exoskeleton and a variable admittance control method based on HRI,which provides a new method for the design and control of exoskeletons with high compatibility.