Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huangg...Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.展开更多
A simple but applicable analytical model is presented to predict the lat- eral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derive...A simple but applicable analytical model is presented to predict the lat- eral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derived from the momentum equation and the flow continuity equation under the condition of quasi-uniform flow. A series of experiments are conducted in a large-scale meandering compound channel. Based on the experimental data, a magnitude analysis is carried out for the governing equation, and two lower-order shear stress terms are ignored. Four groups of experimental data from different sources are used to verify the predictive capability of this model, and good predictions are obtained. Finally, the determination of the velocity parameter and the limitation of this model are discussed.展开更多
This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant tran...This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways. Three depth-averaged two-equation closure turbulence models, k-ε, k- w, and k- w, were used to close the quasi three-dimensional hydrodynamic model. The k- w model was recently established by the authors and is still in the testing process. The general-purpose computational programs and turbulence models will be involved in a software that is under development. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations, which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement. The results calculated with the three turbulence models were compared with one another. In addition to the steady flow and thermal transport simulation, the unsteady process of waste heat inpouring and development in the cooling pool was also investigated.展开更多
For shallow water flow, the depth-averaged governing equations are derived by depth-averaging of the mean equations for three-dimensional turbulent flows. The influences of free water surface and of topography of rive...For shallow water flow, the depth-averaged governing equations are derived by depth-averaging of the mean equations for three-dimensional turbulent flows. The influences of free water surface and of topography of river bed are taken into account.The depth-averaged equations of k-εturbulence model are also obtained. Because it Accounts for the three-dimensional effect, this model is named as the complete Depth-averaged model.The boundaries of natural water bodies are usually curved.In this work, the derived equations in Cartesian coordinates are transformed into orthogonal coordinates. The obtained equations can be applied directly to numerical computation of practical problems.展开更多
This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms...This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms(a depth-averaged concentration flux model), and shallow water equations with a fully coupled Exner equation(a bed load flux model). Both models were discretized using the cell-centered finite volume method, and a second-order Godunov-type scheme was used to solve the equations. The numerical flux was calculated using a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored(HLLC). A novel slope source term treatment that considers the density change was introduced to the depth-averaged concentration flux model to obtain higher-order accuracy. A source term that accounts for the sediment flux was added to the bed load flux model to reflect the influence of sediment movement on the momentum of the water. In a onedimensional test case, a sensitivity study on different model parameters was carried out. For the depth-averaged concentration flux model,Manning's coefficient and sediment porosity values showed an almost linear relationship with the bottom change, and for the bed load flux model, the sediment porosity was identified as the most sensitive parameter. The capabilities and limitations of both model concepts are demonstrated in a benchmark experimental test case dealing with dam-break flow over variable bed topography.展开更多
This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters...This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters. Three depth-averaged two-equation turbulence closure models, k-ε,k-w, and k-w, were used to close the non-simplified quasi-three-dimensional hydrodynamic fundamental governing equations. The discretized equations were solved with the advanced multi-grid iterative method using non-orthogonal body-fitted coarse and fine grids with collocated variable arrangement. Except for steady flow computation, the processes of contaminant inpouring and plume development at the beginning of discharge, caused by a side-discharge of a tributary, have also been numerically investigated. The three depth-averaged two-equation closure models are all suitable for modeling strong mixing turbulence. The newly established turbulence models such as the k-w model, with a higher order of magnitude of the turbulence parameter, provide a possibility for improving computational precision.展开更多
The prediction of indentation depth of abrasive grain in hydrophilic fixed-abrasive(FA)lapping is crucial for controlling material removal rate and surface quality of the work-piece being machined.By applying the theo...The prediction of indentation depth of abrasive grain in hydrophilic fixed-abrasive(FA)lapping is crucial for controlling material removal rate and surface quality of the work-piece being machined.By applying the theory of contact mechanics,a theoretical model of the indentation depth of abrasive grain was developed and the relationships between indentation depth and properties of contact pairs and abrasive back-off were studied.Also,the average surface roughness(Ra)of lapped wafer was approximately calculated according to the obtained indentation depth.To verify the rationality of the proposed model,a series of lapping experiments on lithium niobate(LN)wafers were carried out,whose average surface roughness Ra was measured by atomic force microscope(AFM).The experimental results were coincided with the theoretical predictions,verifying the rationality of the proposed model.It is concluded that the indentation depth of the fixed abrasive was primarily affected by the applied load,wafer micro hardness and pad Young′s modulus and so on.Moreover,the larger the applied load,the more significant the back-off of the abrasive grain.The model established in this paper is helpful to the design of FA pad and its machining parameters,and the prediction of Ra as well.展开更多
In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading level...In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading levels of serviceability state.The effects of the depth of normal section beams on the crack spacing and crack width were analyzed,and the modified model is proposed for calculating the average crack spacing by thinking about the depth of normal section,the reinforcement arrangement and the effective reinforcement ratio.The relationships of crack widths at any position in the tensile zone and at the reinforcement level on the side surface of beam were studied.By theoretical and statistical analysis,a method is proposed to calculate the ratios of crack widths between any position and the reinforcement level on the side surface of large depth reinforced concrete beams.展开更多
This paper investigates impact of noise and signal averaging on patient control in anesthesia applications, especially in networked control system settings such as wireless connected systems, sensor networks, local ar...This paper investigates impact of noise and signal averaging on patient control in anesthesia applications, especially in networked control system settings such as wireless connected systems, sensor networks, local area networks, or tele-medicine over a wide area network. Such systems involve communication channels which introduce noises due to quantization, channel noises, and have limited communication bandwidth resources. Usually signal averaging can be used effectively in reducing noise effects when remote monitoring and diagnosis are involved. However, when feedback is intended, we show that signal averaging will lose its utility substantially. To explain this phenomenon, we analyze stability margins under signal averaging and derive some optimal strategies for selecting window sizes. A typical case of anesthe-sia depth control problems is used in this development.展开更多
基金supported by the NSFC HSR Fundamental Research Joint Fund (Grant No.U1934213)。
文摘Purpose-This study aims to research the large cross-section tunnel stability evaluation method corrected after considering the thickness-span ratio.Design/methodology/approach-First,taking the Liuyuan Tunnel of Huanggang-Huangmei High-Speed Railway as an example and taking deflection of the third principal stress of the surrounding rock at a vault after tunnel excavation as the criterion,the critical buried depth of the large section tunnel was determined.Then,the strength reduction method was employed to calculate the tunnel safety factor under different rock classes and thickness-span ratios,and mathematical statistics was conducted to identify the relationships of the tunnel safety factor with the thickness-span ratio and the basic quality(BQ)index of the rock for different rock classes.Finally,the influences of thickness-span ratio,groundwater,initial stress of rock and structural attitude factors were considered to obtain the corrected BQ,based on which the stability of a large cross-section tunnel with a depth of more than 100 m during mechanized operation was analyzed.This evaluation method was then applied to Liuyuan Tunnel and Cimushan No.2 Tunnel of Chongqing Urban Expressway for verification.Findings-This study shows that under different rock classes,the tunnel safety factor is a strict power function of the thickness-span ratio,while a linear function of the BQ to some extent.It is more suitable to use the corrected BQ as a quantitative index to evaluate tunnel stability according to the actual conditions of the site.Originality/value-The existing industry standards do not consider the influence of buried depth and span in the evaluation of tunnel stability.The stability evaluation method of large section tunnel considering the correction of overburden span ratio proposed in this paper achieves higher accuracy for the stability evaluation of surrounding rock in a full or large-section mechanized excavation of double line high-speed railway tunnels.
基金Project supported by the National Natural Science Foundation of China(Nos.11171238,51279117,and 11072161)the Program for New Century Excellent Talents in University of China(No.NCET-13-0393)the National Science and Technology Ministry of China(No.2012BAB05B02)
文摘A simple but applicable analytical model is presented to predict the lat- eral distribution of the depth-averaged velocity in meandering compound channels. The governing equation with curvilinear coordinates is derived from the momentum equation and the flow continuity equation under the condition of quasi-uniform flow. A series of experiments are conducted in a large-scale meandering compound channel. Based on the experimental data, a magnitude analysis is carried out for the governing equation, and two lower-order shear stress terms are ignored. Four groups of experimental data from different sources are used to verify the predictive capability of this model, and good predictions are obtained. Finally, the determination of the velocity parameter and the limitation of this model are discussed.
基金supported by FAPESP (Foundation for Supporting Research in So Paulo State), Brazil, of the PIPE Project (Grant No. 2006/56475-3)
文摘This paper describes a numerical simulation of thermal discharge in the cooling pool of an electrical power station, aiming to develop general-purpose computational programs for grid generation and flow/pollutant transport in the complex domains of natural and artificial waterways. Three depth-averaged two-equation closure turbulence models, k-ε, k- w, and k- w, were used to close the quasi three-dimensional hydrodynamic model. The k- w model was recently established by the authors and is still in the testing process. The general-purpose computational programs and turbulence models will be involved in a software that is under development. The SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm and multi-grid iterative method are used to solve the hydrodynamic fundamental governing equations, which are discretized on non-orthogonal boundary-fitted grids with a variable collocated arrangement. The results calculated with the three turbulence models were compared with one another. In addition to the steady flow and thermal transport simulation, the unsteady process of waste heat inpouring and development in the cooling pool was also investigated.
文摘For shallow water flow, the depth-averaged governing equations are derived by depth-averaging of the mean equations for three-dimensional turbulent flows. The influences of free water surface and of topography of river bed are taken into account.The depth-averaged equations of k-εturbulence model are also obtained. Because it Accounts for the three-dimensional effect, this model is named as the complete Depth-averaged model.The boundaries of natural water bodies are usually curved.In this work, the derived equations in Cartesian coordinates are transformed into orthogonal coordinates. The obtained equations can be applied directly to numerical computation of practical problems.
文摘This paper presents numerical simulations of dam-break flow over a movable bed. Two different mathematical models were compared: a fully coupled formulation of shallow water equations with erosion and deposition terms(a depth-averaged concentration flux model), and shallow water equations with a fully coupled Exner equation(a bed load flux model). Both models were discretized using the cell-centered finite volume method, and a second-order Godunov-type scheme was used to solve the equations. The numerical flux was calculated using a Harten, Lax, and van Leer approximate Riemann solver with the contact wave restored(HLLC). A novel slope source term treatment that considers the density change was introduced to the depth-averaged concentration flux model to obtain higher-order accuracy. A source term that accounts for the sediment flux was added to the bed load flux model to reflect the influence of sediment movement on the momentum of the water. In a onedimensional test case, a sensitivity study on different model parameters was carried out. For the depth-averaged concentration flux model,Manning's coefficient and sediment porosity values showed an almost linear relationship with the bottom change, and for the bed load flux model, the sediment porosity was identified as the most sensitive parameter. The capabilities and limitations of both model concepts are demonstrated in a benchmark experimental test case dealing with dam-break flow over variable bed topography.
基金supported by FAPESP (Foundation for Supporting Research in So Paulo State), Brazil, of the PIPE Project (Grant No. 2006/56475-3)
文摘This paper describes a numerical simulation in the Amazon water system, aiming to develop a quasi-three-dimensional numerical tool for refined modeling of turbulent flow and passive transport of mass in natural waters. Three depth-averaged two-equation turbulence closure models, k-ε,k-w, and k-w, were used to close the non-simplified quasi-three-dimensional hydrodynamic fundamental governing equations. The discretized equations were solved with the advanced multi-grid iterative method using non-orthogonal body-fitted coarse and fine grids with collocated variable arrangement. Except for steady flow computation, the processes of contaminant inpouring and plume development at the beginning of discharge, caused by a side-discharge of a tributary, have also been numerically investigated. The three depth-averaged two-equation closure models are all suitable for modeling strong mixing turbulence. The newly established turbulence models such as the k-w model, with a higher order of magnitude of the turbulence parameter, provide a possibility for improving computational precision.
基金supported by the Science Foundation of Aviation(No.2014ZE52055)the National Science Foundation of China(No.51675276)+1 种基金the Funding of Jiangsu Innovation Program for Graduate Education(No.KYLX_0231)the Fundamental Research Funds for the Central Universities
文摘The prediction of indentation depth of abrasive grain in hydrophilic fixed-abrasive(FA)lapping is crucial for controlling material removal rate and surface quality of the work-piece being machined.By applying the theory of contact mechanics,a theoretical model of the indentation depth of abrasive grain was developed and the relationships between indentation depth and properties of contact pairs and abrasive back-off were studied.Also,the average surface roughness(Ra)of lapped wafer was approximately calculated according to the obtained indentation depth.To verify the rationality of the proposed model,a series of lapping experiments on lithium niobate(LN)wafers were carried out,whose average surface roughness Ra was measured by atomic force microscope(AFM).The experimental results were coincided with the theoretical predictions,verifying the rationality of the proposed model.It is concluded that the indentation depth of the fixed abrasive was primarily affected by the applied load,wafer micro hardness and pad Young′s modulus and so on.Moreover,the larger the applied load,the more significant the back-off of the abrasive grain.The model established in this paper is helpful to the design of FA pad and its machining parameters,and the prediction of Ra as well.
基金Sponsored by the Outstanding Youth Scientific Fund of Henan Province(Grant No.04120002300)Program for Innovation in University of Henan Province(Grant No.[2004]294)
文摘In order to meet the requirement of structural inspection,the crack spacing and crack width at various heights in the tensile zone of six large depth reinforced concrete beams were measured under several loading levels of serviceability state.The effects of the depth of normal section beams on the crack spacing and crack width were analyzed,and the modified model is proposed for calculating the average crack spacing by thinking about the depth of normal section,the reinforcement arrangement and the effective reinforcement ratio.The relationships of crack widths at any position in the tensile zone and at the reinforcement level on the side surface of beam were studied.By theoretical and statistical analysis,a method is proposed to calculate the ratios of crack widths between any position and the reinforcement level on the side surface of large depth reinforced concrete beams.
文摘This paper investigates impact of noise and signal averaging on patient control in anesthesia applications, especially in networked control system settings such as wireless connected systems, sensor networks, local area networks, or tele-medicine over a wide area network. Such systems involve communication channels which introduce noises due to quantization, channel noises, and have limited communication bandwidth resources. Usually signal averaging can be used effectively in reducing noise effects when remote monitoring and diagnosis are involved. However, when feedback is intended, we show that signal averaging will lose its utility substantially. To explain this phenomenon, we analyze stability margins under signal averaging and derive some optimal strategies for selecting window sizes. A typical case of anesthe-sia depth control problems is used in this development.