●AIM:To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty(SLAK)with corneal crosslinking(CXL)on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomi...●AIM:To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty(SLAK)with corneal crosslinking(CXL)on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis(FS-LASIK).●METHODS:A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo.The lenticules were collected from patients undertaking small incision lenticule extraction(SMILE)for the correction of myopia.Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength.●RESULTS:All surgeries were conducted successfully with no significant complications.Their best corrected visual acuity(BCVA)ranged from 0.05 to 0.8-2 before surgery.The pre-operational total corneal thickness ranged from 345-404μm and maximum keratometry(Kmax)ranged from 50.8 to 86.3.After the combination surgery,both the corneal keratometry(range 55.9 to 92.8)and total corneal thickness(range 413-482μm)significantly increased.Four out of 5 patients had improvement of corneal biomechanical parameters(reflected by stiffness parameter A1 in Corvis ST).However,3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze.Despite the onset of corneal edema right after SLAK,the corneal topography and thickness generally stabilized after 3mo.●CONCLUSION:SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia.Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.展开更多
AIM:To investigate changes in choroidal thickness and vascularity in keratoconus patients treated with corneal crosslinking.METHODS:This study evaluated 28 eyes of 22 patients with keratoconus who underwent corneal cr...AIM:To investigate changes in choroidal thickness and vascularity in keratoconus patients treated with corneal crosslinking.METHODS:This study evaluated 28 eyes of 22 patients with keratoconus who underwent corneal crosslinking.The choroidal thicknesses were evaluated on enhanced depth imaging optical coherence tomography at the preoperative and postoperative 3d,1,and 3mo.Choroidal thickness in the four cardinal quadrants and the fovea were evaluated.The choroidal vascularity index was also calculated.RESULTS:There was no significant difference in central choroidal thickness between the preoperative and postoperative 3d,1mo(P>0.05).There was a significant increase in the 3mo(P=0.034)and a significant decrease in the horizontal choroidal vascularity index on the postoperative 3d(P=0.014),there was no statistically significant change in vertical axes and other visits in horizontal sections(P>0.05).CONCLUSION:This study sheds light on choroidal changes in postoperative corneal crosslinking for keratoconus.While it suggests the procedure’s relative safety for submacular choroid,more extensive research is necessary to confirm these findings and their clinical significance.展开更多
Carcinoma-associated fibroblasts(CAFs)are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix(ECM).The tumor-associated ECM is characterized ...Carcinoma-associated fibroblasts(CAFs)are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix(ECM).The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase(LOX).Small extracellular vesicles(sEVs)mediate cell-cell communication.However,the interactions between sEVs and the ECM remain unclear.Here,we demonstrated that sEVs released from oral squamous cell carcinoma(OSCC)-derived CAFs induce collagen crosslinking,thereby promoting epithelial-mesenchymal transition(EMT).CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking,and a LOX inhibitor or blocking antibody suppressed this effect.Active LOX(αLOX),but not the LOX precursor,was enriched in CAF sEVs and interacted with periostin,fibronectin,and bone morphogenetic protein-1 on the surface of sEVs.CAF sEV-associated integrinα2β1 mediated the binding of CAF sEVs to collagen I,and blocking integrinα2β1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I.CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway.Taken together,these findings reveal a novel role of CAF sEVs in tumor ECM remodeling,suggesting a critical mechanism for CAF-induced EMT of cancer cells.展开更多
Three-dimensional printing technologies exhibit tremendous potential in the advancing fields of tissue engineering and regenerative medicine due to the precise spatial control over depositing the biomaterial.Despite t...Three-dimensional printing technologies exhibit tremendous potential in the advancing fields of tissue engineering and regenerative medicine due to the precise spatial control over depositing the biomaterial.Despite their widespread utilization and numerous advantages,the development of suitable novel biomaterials for extrusion-based 3D printing of scaffolds that support cell attachment,proliferation,and vascularization remains a challenge.Multi-material composite hydrogels present incredible potential in this field.Thus,in this work,a multi-material composite hydrogel with a promising formulation of chitosan/gelatin functionalized with egg white was developed,which provides good printability and shape fidelity.In addition,a series of comparative analyses of different crosslinking agents and processes based on tripolyphosphate(TPP),genipin(GP),and glutaraldehyde(GTA)were investigated and compared to select the ideal crosslinking strategy to enhance the physicochemical and biological properties of the fabricated scaffolds.All of the results indicate that the composite hydrogel and the resulting scaffolds utilizing TPP crosslinking have great potential in tissue engineering,especially for supporting neo-vessel growth into the scaffold and promoting angiogenesis within engineered tissues.展开更多
The crosslinking mechanism of glyoxal and asparagine was analyzed,and the relationship between the mechanism and practical performances of soy protein-based adhesives was also discussed.It is shown that when pH=1 and ...The crosslinking mechanism of glyoxal and asparagine was analyzed,and the relationship between the mechanism and practical performances of soy protein-based adhesives was also discussed.It is shown that when pH=1 and 3,glyoxal reacted with asparagine in the form of major cyclic ether compounds.When pH=5,glyoxal reacted with asparagine in two structural forms of sodium glycollate and cyclic ether compounds.However,amidogens of asparagine were easy to develop protonation under acid conditions.Supplemented by the instability of cyclic ether compounds,the reaction activity and reaction degree between glyoxal and asparagine were relatively small.Under alkaline conditions,glyoxal mainly reacted with asparagine in the form of sodium glycollate.With the increase of pH,the polycondensation was more sufficient and the produced polycondensation products were more stable.The reaction mechanism between glyoxal and asparagine had strong correspondence to the practical performances of the adhesives.Glyoxal solution could develop crosslinking reactions with soy protein under both acid and alkaline conditions.Bonding strength and water resistance of the prepared soy protein-based adhesives were increased significantly.When pH>7,glyoxal had relatively high reaction activity and reaction intensity with soy protein,and the prepared adhesives had high crosslinking density and cohesion strength,showing relatively high bonding strength,water resistance and thermal stability.展开更多
LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,as the promising cathode candidate for next-generation highenergy lithium-ion batteries,has gained considerable attention for extremely high theoretical capacity and low...LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,as the promising cathode candidate for next-generation highenergy lithium-ion batteries,has gained considerable attention for extremely high theoretical capacity and low cost.Nevertheless,the intrinsic drawbacks of NCM811 such as unstable structure and inevitable interface side reaction result in severe capacity decay and thermal runaway.Herein,a novel polyimide(denoted as PI-Om DT)constructed with the highly polar and micro-branched crosslinking network is reported as a binder material for NCM811 cathode.The micro-branched crosslinking network is achieved by using 1,3,5-Tris(4-aminophenoxy)benzene(TAPOB)as a crosslinker via condensation reaction,which endows excellent mechanical properties and large free volume.Meanwhile,the massive polar carboxyl(-COOH)groups provide strong adhesion sites to active NCM811 particles.These functions of PIOm DT binder collaboratively benefit to forming the mechanically robust and homogeneous coating layer with rapid Li+diffusion on the surface of NCM811,significantly stabilizing the cathode structure,suppressing the detrimental interface side reaction and guaranteeing the shorter ion-diffusion and electron-transfer paths,consequently enhancing electrochemical performance.As compared to the NCM811 with PVDF binder,the NCM811 using PI-Om DT binder delivers a superior high-rate capacity(121.07 vs.145.38 m Ah g^(-1))at 5 C rate and maintains a higher capacity retention(80.38%vs.91.6%)after100 cycles at 2.5–4.3 V.Particularly,at the high-voltage conditions up to 4.5 and 4.7 V,the NCM811 with PI-Om DT binder still maintains the remarkable capacity retention of 88.86%and 72.5%after 100 cycles,respectively,paving the way for addressing the high-voltage operating stability of the NCM811 cathode.Moreover,the full-charged NCM811 cathode with PI-Om DT binder exhibits a significantly enhanced thermal stability,improving the safety performance of batteries.This work opens a new avenue for developing high-energy NCM811 based lithium-ion batteries with long cycle-life and superior safety performance using a novel and effective binder.展开更多
A yellow crosslinking polymeric dye was prepared by grafting the flavone moiety containing azo chromophore onto polyvinylamine backbone.The λ max of this polymeric dye in water is 382 nm.The polymeric dye is fixed to...A yellow crosslinking polymeric dye was prepared by grafting the flavone moiety containing azo chromophore onto polyvinylamine backbone.The λ max of this polymeric dye in water is 382 nm.The polymeric dye is fixed to silk and cotton with a crosslinking agent,2-chloro-4,6-di(aminobenzene-4'-β-sulphatoethylsulphone)-1,3,5-s-triazine,which acts as a bridge between the fiber and dye molecules.The fixation of this polymeric dye reaches 99% and the dyed samples exhibit excellent rubbing and washing fastness.展开更多
AIM:To compare the safety and efficacy of conventional versus accelerated(9 mW/cm^2)corneal collagen crosslinking(CXL)in progressive keratoconus at the 2-year follow-up.METHODS:In this prospective study,consecutive pr...AIM:To compare the safety and efficacy of conventional versus accelerated(9 mW/cm^2)corneal collagen crosslinking(CXL)in progressive keratoconus at the 2-year follow-up.METHODS:In this prospective study,consecutive progressive keratoconus patients were randomized to receive either conventional CXL(CCXL)or accelerated CXL(ACXL;using hydroxypropyl methylcellulose-assisted riboflavin imbibition for 10 min at 9 mW/cm^2).Visual,refractive,keratometric,topographic,and aberrometric outcomes and stromal demarcation line depth(DLD)measurements were compared at the end of a 2-year follow-up.RESULTS:Thirty-two eyes from 32 patients in the CCXL and 27 eyes from 27 patients in the ACXL groups completed 2-year follow-up.At 2y post-CXL,both uncorrected and corrected visual acuities improved significantly in both groups.The improvements in keratometric readings,flattening rate(flattening of the maximum keratometry more than 1 D),3 topographic indices,and vertical coma were significantly better in the CCXL group compared to the ACXL group(P<0.05).The DLD as measured by anterior segment optical coherence tomography or in vivo confocal microscopy was better detectable and significantly deeper in the CCXL group compared to the ACXL group.The deeper DLD was found to be significantly correlated with improvements in the mean keratometry measurements.Progression was noted in 11.1%of eyes in the ACXL group,whereas progression was not observed in any patient eye in the CCXL group.CONCLUSION:In this prospective randomized study,ACXL is less effective in halting the progression of keratoconus at a 2-year follow-up compared to CCXL.展开更多
Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation ...Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation into human body.In this study,UHMWPE and UHMWPE/nano-hydroxyapatite(n-HA)composite were prepared by vacuum hot-pressing method.The prepared materials were irradiated by gamma rays in vacuum and molten heat treated in vacuum just after irradiation.The effect of filling n-HA with gamma irradiation on tribological properties of UHMWPE was investigated by using friction and wear experimental machine(model MM-200)under deionized water lubrication.Micro-morphology of worn surface was observed by metallographic microscope.Contact angle and hardness of the materials were also measured.The results show that contact angle and hardness are changed by filling n-HA and gamma irradiation.Friction coefficient and wear rate under deionized water lubrication are reduced by filling n-HA.While friction coefficient is increased and wear rate is reduced significantly by gamma irradiation.The worn surface of unfilled material is mainly characterized as adhesive wear and abrasive wear,and that of n-HA filled material is mainly characterized as abrasive wear.After gamma irradiation,the degrees of adhesive and abrasive wear for unfilled material and abrasive wear of n-HA filled material are significantly reduced.Unfilled and filled materials after irradiation are mainly shown as slight fatigue wear.The results indicate that UHMWPE and UHMWPE/n-HA irradiated at the dose of 150 kGy can be used as bearing materials in artificial joints for its excellent wear resistance compared to original UHMWPE.展开更多
Objective: Procyanidins (PC) are widely available natural polyphenols. The present study is designed to investigate if PC can inhibit angiogenesis in lung adenocarcinoma xenografts through crosslinking vascular ext...Objective: Procyanidins (PC) are widely available natural polyphenols. The present study is designed to investigate if PC can inhibit angiogenesis in lung adenocarcinoma xenografts through crosslinking vascular extracellular matrix (ECM) and preventing proteolysis by matrix metalloproteinases (MMPs). Methods: Using the in vitro MMP-2 proteolysis and in vivo subcutaneous implantation models, we investigated if PC crosslinking inhibits MMP-mediated proteolysis. Using a cultured cell detachment assay, an in vitro angiogenesis assay, and a cell proliferation assay, we investigated if PC inhibits MMP-2-mediated endothelial cell detachment, angiogenesis, and cell proliferation, respectively. Using tumor xenografts, we evaluated if PC can inhibit growth of lung adenocarcinoma. Results: PC crosslink vascular ECM proteins, protecting them against proteolysis by MMPs in vitro and in vivo, protecting cultured human umbilical vein endothelial cells from detachment by MMP-2, and inhibiting in vitro angiogenesis. However, PC (0.75-100 μg/mL) did not inhibit vascular and tumor cells proliferation. PC injections (30 mg PC/kg bodyweight) in situ had anticancer effects on xenografts of lung adenocarcinoma, most likely by inhibiting angiogenesis during ECM proteolysis by MMPs. Conclusion: The results suggest that PC may be important MMP inhibitors that can be used as therapeutic anticancer agents.展开更多
AIM: To evaluate the efficacy and safety of corneal collagen crosslinking (01) to prevent the progression of post-laser in situ keratomileusis (LASIK) corneal ectasia. METHODS: In a prospective, nonrandomized, single-...AIM: To evaluate the efficacy and safety of corneal collagen crosslinking (01) to prevent the progression of post-laser in situ keratomileusis (LASIK) corneal ectasia. METHODS: In a prospective, nonrandomized, single-centre study, CXL was performed in 20 eyes of 11 patients who had LASIK for myopic astigmatism and subsequently developed keratectasia. The procedure included instillation of 0.1% riboflavin-20% dextrane solution 30 minutes before UVA irradiation and every 5 minutes for an additional 30 minutes during irradiation. The eyes were evaluated preoperatively and at 1-, 3-, 6-, and 12-month intervals. The complete ophthalmologic examination comprised uncorrected visual acuity, best spectacle-corrected visual acuity, endothelial cell count, ultrasound pachymetry, corneal topography, and in vivo confocal microscopy. RESULTS: CXL appeared to stabilise or partially reverse the progression of post-LASIK corneal ectasia without apparent complication in our cohort. UCVA and BCVA improvements were statistically significant (P<0.05)beyond 12 months after surgery (improvement of 0.07 and 0.13 logMAR at 1 year, respectively). Mean baseline flattest meridian keratometry and mean steepest meridian keratometry reduction (improvement of 2.00 and 1.50 diopters (D), respectively) were statistically significant (P < 0.05) at 12 months postoperatively. At 1 year after 01, mean endothelial cell count did not deteriorate. Mean thinnest cornea pachymetry increased significantly. CONCLUSION: The results of the study showed a long-term stability of post-LASIK corneal ectasia after crosslinking without relevant side effects. It seems to be a safe and promising procedure to stop the progression of post-LASIK keratectasia, thereby avoiding or delaying keratoplasty.展开更多
Epoxy resin (EPR) was used to crosslink with Camellia oleifera Abel.protein to prepare wood adhesive,and the bonding performance and curing characteristics of which were mainly investigated,and the synthesis mechanism...Epoxy resin (EPR) was used to crosslink with Camellia oleifera Abel.protein to prepare wood adhesive,and the bonding performance and curing characteristics of which were mainly investigated,and the synthesis mechanism was also discussed by using model compounds.The experimental results show that EPR can significantly improve the bonding performance of Camellia oleifera Abel.protein-based adhesive,and the maximum of which reaches 0.72 MPa satisfies the strength requirement of Type II plywood in GB/T 17657-2013.After alkali treatment,the protein can more easily crosslink with EPR at low curing temperature,and the adhesive has high degree of crystallinity of curing products,high degree of crosslinking reaction,and high bonding strength.The reaction mechanism of EPR-modified Camellia oleifera Abel.protein adhesive can be divided into resinification phase and curing phase.展开更多
Crosslinking treatments for a commercially available aromatic polyamide reverse osmosis membrane were carried out to improve its chlorine resistance.The crosslinking agents including 1,6-hexanediol diglycidyl ether,ad...Crosslinking treatments for a commercially available aromatic polyamide reverse osmosis membrane were carried out to improve its chlorine resistance.The crosslinking agents including 1,6-hexanediol diglycidyl ether,adipoyl dichloride and hexamethylene diisocyanate ester with long flexible aliphatic chains and high reactivity with N-H groups were used in the experiments.Attenuated total reflective Fourier transform infrared spectra verified the successful preparation of highly crosslinked membranes by crosslinking treatments.It was suggested that the crosslinking agents were connected to membrane surface through the reactions with amine and amide Ⅱ groups,which is confirmed by surface charge measurements.Based on contact angle measurements,crosslinking treatments decreased membrane hydrophilicity by introducing methylene groups to membrane surface.With increasing amount of crosslinking agent molecules connected to membrane surface,the hydrolysis of unconnected functional groups of crosslinking agent produced polar groups and increased membrane hydrophilicity.The highly crosslinked membranes showed higher salt rejections and lower water fluxes as compared with the raw membrane.Since the active sites(N-H groups) vulnerable to free chlorine on membrane surface were eliminated by crosslinking treatments,the chlorine resistances of the highly crosslinked membranes were significantly improved by slighter changes in both water fluxes and salt rejections after chlorination.展开更多
In this paper, radiation-induced crosslinking mechanism and characterization of the crosslinking density of F-40 and F-4 by X-ray photoelectron spectroscopy (XPS) have been studied. The dose of gelation of F-40 obta...In this paper, radiation-induced crosslinking mechanism and characterization of the crosslinking density of F-40 and F-4 by X-ray photoelectron spectroscopy (XPS) have been studied. The dose of gelation of F-40 obtained from XPS is 4.1×10;Gy. It is found that crosslinking density is the largest in the range of certain dose for F-40 and F-4.展开更多
A new monomer, 1,4-bis(4-fluorobenzoyl) naphthalene(compound 2) was synthesized via a two-step reaction. 1,4-Naphthalenedicarboxylic acid chloride(compound 1) was prepared by using the acyl chlorization reaction of 1,...A new monomer, 1,4-bis(4-fluorobenzoyl) naphthalene(compound 2) was synthesized via a two-step reaction. 1,4-Naphthalenedicarboxylic acid chloride(compound 1) was prepared by using the acyl chlorization reaction of 1,4-naphthalenedicarboxylic acid with thionyl chloride. The Friedel-Crafts acylation of compound 1 with fluorobenzene afforded compound 2 in a 80% yield. The polycondensation of compound 2 with various bisphenols in tetramethylene sulfone(TMS) in the presence of excess potassium carbonate as a condensation reagent was carried out at 210 ℃ to quantitatively afford the corresponding poly(aryl ether ketone)s(compounds 3_8) containing 1,4-naphthalene moieties. Thermal analyses showed that the polymers have T g values ranging from 496 to 500 K and are thermally stable in air with initial mass loss above 500 ℃. These novel polymers exhibited an excellent solubility in organic solvents including NMP, DMAc, and chloroform, etc. In addition, the glass transition temperatures of these polymers increased and the polymers became insoluble in chloroform after treated at 260 ℃, indicating the occurrence of a thermal crosslinking reaction.展开更多
Riboflavin-UVA photodynamic inactivation is a potential treatment altemative in therapy resistant infectious keratitis. The purpose of our study was to determine the impact of riboflavin-UVA photodynamic inactivation ...Riboflavin-UVA photodynamic inactivation is a potential treatment altemative in therapy resistant infectious keratitis. The purpose of our study was to determine the impact of riboflavin-UVA photodynamic inactivation on viability, apop- tosis and activation of human keratocytes in vitro. Primary human keratocytes were isolated from human corneal buttons and cultured in DMEM/Ham's F12 medium supplemented with 10% fetal calf serum. Keratocytes underwent UVA light illumination (375 nm) for 4.10 minutes (2 J/cm2) during exposure to different concentrations of riboflavin. Twenty-four hours after treatment, cell viability was evaluated photometrically, whereas apoptosis, CD34 and alpha-smooth muscle actin (α-SMA) expression were assessed using flow cytometry. We did not detect significant changes in cell viability, apoptosis, CD34 and α-SMA expression in groups only treated with riboflavin or UVA light. In the group treated with riboflavin-UVA-photodynamic inactivation, viability of keratocytes decreased significantly at 0.1% riboflavin (P〈0.01) while the percentage of CD34 (P〈0.01 for both 0.05% and 0.1% riboflavin) and alpha-SMA positive keratocytes (P〈0.01 and P〈0.05 for 0.05% and 0.1% riboflavin, respectively) increased significantly compared to the controls. There was no significant change in the percentage of apoptotic keratocytes compared to controls at any of the used ribo- flavin concentrations (P=0.09 and P=0.13). We concluded that riboflavin-UVA-photodynamic-inactivation decreases viability of myofibroblastic transformation and multipotent haematopoietic stem cell transformation; however, it does not have an impact on apoptosis of human keratocytes in vitro.展开更多
The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism h...The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations,X-ray photoelectron spectroscopy (XPS),mechanical property tests,UV spectroscopy,and light microscope.The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) sample...展开更多
A series of acrylic-based superabsorbent resins were synthesized by inverse suspension polymerization, using potassium persulfate as the initiator, N, N'-methylene bisacrylamide (BIS) and divinylbenzene (DVB) as ...A series of acrylic-based superabsorbent resins were synthesized by inverse suspension polymerization, using potassium persulfate as the initiator, N, N'-methylene bisacrylamide (BIS) and divinylbenzene (DVB) as the multiple crosslinking agents. The morphology of the resulting superabsorbent resins revealed by SEM demonstrated that a hard shell layer was indeed formed due to surface crosslinking. The swelling and deswelling properties, and the mechanical strength of superabsorbents were investigated. The results indicated that the adding time of DVB and the amount of DVB participated in the crosslinking show a significant influence on the properties of superabsorbents. When DVB was added in polymerization later, the amount of DVB participated in reaction decreases and the surface crosslinked shell becomes thinner. It is suitable for DVB to be introduced in the later stage of the polymerization process, because the absorption rate of resin is efficiently improved in conjunction with higher water absorption. Furthermore, it was found that the mechanical strength of swollen superabsorbent with surface crosslinking was indeed enhanced in comparison with that of the conventional one.展开更多
A degradable poly(lactic-co-glycolic acid, LA:GA=80:20)(PLGA) urethral tubular scaffold was fabricated by electrospinning. In order to enhance the mechanical properties, the scaffold was crosslinked with glutara...A degradable poly(lactic-co-glycolic acid, LA:GA=80:20)(PLGA) urethral tubular scaffold was fabricated by electrospinning. In order to enhance the mechanical properties, the scaffold was crosslinked with glutaraldehyde. The structure and properties of the crosslinked scaffolds were investigated by the mechanical property testing, scanning electron microscopy(SEM), degradability test in vitro and 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-diphenytetrazo- liumromide(MTT). The results show that the scaffold has the nano-structure. The pore size and the porosity are suitable for cell seeding, growth and extracellular matrix production. Although influenced by the crosslinking slightly, the pore size and the porosity could still support cell proliferation and tissuse formation. The mechanical properties are remarkably increased by the crosslinking of glutaraldehyde, and it could meet the demands of a urethral stent. The scaffold could completely collapse within 70 d. The results of the biocompatibility test show that the PLGA scaffold had no cytotoxicity.展开更多
基金Supported by the Science&Technology Department of Sichuan Province(China)Funding Project(No.2021YFS0221,No.2023YFS0179)1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(No.2022HXFH032,No.ZYJC21058)the Postdoctoral Research Funding of West China Hospital,Sichuan University,China(No.2020HXBH044).
文摘●AIM:To explore the clinical efficacy and safety of stromal lenticule addition keratoplasty(SLAK)with corneal crosslinking(CXL)on patients with corneal ectasia secondary to femtosecond laser-assisted in situ keratomileusis(FS-LASIK).●METHODS:A series of 5 patients undertaking SLAK with CXL for the treatment of corneal ectasia secondary to FS-LASIK were followed for 4-9mo.The lenticules were collected from patients undertaking small incision lenticule extraction(SMILE)for the correction of myopia.Adding a stromal lenticule was aimed at improving the corneal thickness for the safe application of crosslinking and compensating for the thin cornea to improve its mechanical strength.●RESULTS:All surgeries were conducted successfully with no significant complications.Their best corrected visual acuity(BCVA)ranged from 0.05 to 0.8-2 before surgery.The pre-operational total corneal thickness ranged from 345-404μm and maximum keratometry(Kmax)ranged from 50.8 to 86.3.After the combination surgery,both the corneal keratometry(range 55.9 to 92.8)and total corneal thickness(range 413-482μm)significantly increased.Four out of 5 patients had improvement of corneal biomechanical parameters(reflected by stiffness parameter A1 in Corvis ST).However,3 patients showed decreased BCVA after surgery due to the development of irregular astigmatism and transient haze.Despite the onset of corneal edema right after SLAK,the corneal topography and thickness generally stabilized after 3mo.●CONCLUSION:SLAK with CXL is a potentially beneficial and safe therapy for advanced corneal ectasia.Future work needs to address the poor predictability of corneal refractometry and compare the outcomes of different surgical modes.
文摘AIM:To investigate changes in choroidal thickness and vascularity in keratoconus patients treated with corneal crosslinking.METHODS:This study evaluated 28 eyes of 22 patients with keratoconus who underwent corneal crosslinking.The choroidal thicknesses were evaluated on enhanced depth imaging optical coherence tomography at the preoperative and postoperative 3d,1,and 3mo.Choroidal thickness in the four cardinal quadrants and the fovea were evaluated.The choroidal vascularity index was also calculated.RESULTS:There was no significant difference in central choroidal thickness between the preoperative and postoperative 3d,1mo(P>0.05).There was a significant increase in the 3mo(P=0.034)and a significant decrease in the horizontal choroidal vascularity index on the postoperative 3d(P=0.014),there was no statistically significant change in vertical axes and other visits in horizontal sections(P>0.05).CONCLUSION:This study sheds light on choroidal changes in postoperative corneal crosslinking for keratoconus.While it suggests the procedure’s relative safety for submacular choroid,more extensive research is necessary to confirm these findings and their clinical significance.
基金supported by the National Natural Science Foundation of China(82073001 and 82103423)Shanghai Natural Science Foundation(23ZR1454800)Scientific Research Foundation for the Introduction of Talent in Shanghai Stomatological Hospital(SSDC-2021-RC01).
文摘Carcinoma-associated fibroblasts(CAFs)are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix(ECM).The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase(LOX).Small extracellular vesicles(sEVs)mediate cell-cell communication.However,the interactions between sEVs and the ECM remain unclear.Here,we demonstrated that sEVs released from oral squamous cell carcinoma(OSCC)-derived CAFs induce collagen crosslinking,thereby promoting epithelial-mesenchymal transition(EMT).CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking,and a LOX inhibitor or blocking antibody suppressed this effect.Active LOX(αLOX),but not the LOX precursor,was enriched in CAF sEVs and interacted with periostin,fibronectin,and bone morphogenetic protein-1 on the surface of sEVs.CAF sEV-associated integrinα2β1 mediated the binding of CAF sEVs to collagen I,and blocking integrinα2β1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I.CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway.Taken together,these findings reveal a novel role of CAF sEVs in tumor ECM remodeling,suggesting a critical mechanism for CAF-induced EMT of cancer cells.
基金The authors acknowledge the funding support from the National Natural Science Foundation of China(Nos.52175474 and 51775324)the China Scholarship Council(No.202006890054).
文摘Three-dimensional printing technologies exhibit tremendous potential in the advancing fields of tissue engineering and regenerative medicine due to the precise spatial control over depositing the biomaterial.Despite their widespread utilization and numerous advantages,the development of suitable novel biomaterials for extrusion-based 3D printing of scaffolds that support cell attachment,proliferation,and vascularization remains a challenge.Multi-material composite hydrogels present incredible potential in this field.Thus,in this work,a multi-material composite hydrogel with a promising formulation of chitosan/gelatin functionalized with egg white was developed,which provides good printability and shape fidelity.In addition,a series of comparative analyses of different crosslinking agents and processes based on tripolyphosphate(TPP),genipin(GP),and glutaraldehyde(GTA)were investigated and compared to select the ideal crosslinking strategy to enhance the physicochemical and biological properties of the fabricated scaffolds.All of the results indicate that the composite hydrogel and the resulting scaffolds utilizing TPP crosslinking have great potential in tissue engineering,especially for supporting neo-vessel growth into the scaffold and promoting angiogenesis within engineered tissues.
基金Funded by the National Natural Science Foundation of China(No.32160348)the Department Program of Guizhou Province(No.ZK[2021]162)+1 种基金the Guizhou Province Science and Technology Plan Project(No.[2020]1Y128)the Forestry Department Foundation of Guizhou Province of China(Nos.J[2022]21 and[2020]C14)。
文摘The crosslinking mechanism of glyoxal and asparagine was analyzed,and the relationship between the mechanism and practical performances of soy protein-based adhesives was also discussed.It is shown that when pH=1 and 3,glyoxal reacted with asparagine in the form of major cyclic ether compounds.When pH=5,glyoxal reacted with asparagine in two structural forms of sodium glycollate and cyclic ether compounds.However,amidogens of asparagine were easy to develop protonation under acid conditions.Supplemented by the instability of cyclic ether compounds,the reaction activity and reaction degree between glyoxal and asparagine were relatively small.Under alkaline conditions,glyoxal mainly reacted with asparagine in the form of sodium glycollate.With the increase of pH,the polycondensation was more sufficient and the produced polycondensation products were more stable.The reaction mechanism between glyoxal and asparagine had strong correspondence to the practical performances of the adhesives.Glyoxal solution could develop crosslinking reactions with soy protein under both acid and alkaline conditions.Bonding strength and water resistance of the prepared soy protein-based adhesives were increased significantly.When pH>7,glyoxal had relatively high reaction activity and reaction intensity with soy protein,and the prepared adhesives had high crosslinking density and cohesion strength,showing relatively high bonding strength,water resistance and thermal stability.
基金supported by the Fundamental Research Funds for the Central Universities(XK1802-2)the National Key Basic Research Program of China(973 Program,2014CB643604)+2 种基金the National Natural Science Foundation of China(51673017)National Natural Science Foundation of China(21404005)the Natural Science Foundation of Jiangsu Province(BK20150273)。
文摘LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,as the promising cathode candidate for next-generation highenergy lithium-ion batteries,has gained considerable attention for extremely high theoretical capacity and low cost.Nevertheless,the intrinsic drawbacks of NCM811 such as unstable structure and inevitable interface side reaction result in severe capacity decay and thermal runaway.Herein,a novel polyimide(denoted as PI-Om DT)constructed with the highly polar and micro-branched crosslinking network is reported as a binder material for NCM811 cathode.The micro-branched crosslinking network is achieved by using 1,3,5-Tris(4-aminophenoxy)benzene(TAPOB)as a crosslinker via condensation reaction,which endows excellent mechanical properties and large free volume.Meanwhile,the massive polar carboxyl(-COOH)groups provide strong adhesion sites to active NCM811 particles.These functions of PIOm DT binder collaboratively benefit to forming the mechanically robust and homogeneous coating layer with rapid Li+diffusion on the surface of NCM811,significantly stabilizing the cathode structure,suppressing the detrimental interface side reaction and guaranteeing the shorter ion-diffusion and electron-transfer paths,consequently enhancing electrochemical performance.As compared to the NCM811 with PVDF binder,the NCM811 using PI-Om DT binder delivers a superior high-rate capacity(121.07 vs.145.38 m Ah g^(-1))at 5 C rate and maintains a higher capacity retention(80.38%vs.91.6%)after100 cycles at 2.5–4.3 V.Particularly,at the high-voltage conditions up to 4.5 and 4.7 V,the NCM811 with PI-Om DT binder still maintains the remarkable capacity retention of 88.86%and 72.5%after 100 cycles,respectively,paving the way for addressing the high-voltage operating stability of the NCM811 cathode.Moreover,the full-charged NCM811 cathode with PI-Om DT binder exhibits a significantly enhanced thermal stability,improving the safety performance of batteries.This work opens a new avenue for developing high-energy NCM811 based lithium-ion batteries with long cycle-life and superior safety performance using a novel and effective binder.
基金Supported by the National Natural Science Foundation of China (20804007) the State Key Laboratory of Fine Chemicals(KF1014)
文摘A yellow crosslinking polymeric dye was prepared by grafting the flavone moiety containing azo chromophore onto polyvinylamine backbone.The λ max of this polymeric dye in water is 382 nm.The polymeric dye is fixed to silk and cotton with a crosslinking agent,2-chloro-4,6-di(aminobenzene-4'-β-sulphatoethylsulphone)-1,3,5-s-triazine,which acts as a bridge between the fiber and dye molecules.The fixation of this polymeric dye reaches 99% and the dyed samples exhibit excellent rubbing and washing fastness.
文摘AIM:To compare the safety and efficacy of conventional versus accelerated(9 mW/cm^2)corneal collagen crosslinking(CXL)in progressive keratoconus at the 2-year follow-up.METHODS:In this prospective study,consecutive progressive keratoconus patients were randomized to receive either conventional CXL(CCXL)or accelerated CXL(ACXL;using hydroxypropyl methylcellulose-assisted riboflavin imbibition for 10 min at 9 mW/cm^2).Visual,refractive,keratometric,topographic,and aberrometric outcomes and stromal demarcation line depth(DLD)measurements were compared at the end of a 2-year follow-up.RESULTS:Thirty-two eyes from 32 patients in the CCXL and 27 eyes from 27 patients in the ACXL groups completed 2-year follow-up.At 2y post-CXL,both uncorrected and corrected visual acuities improved significantly in both groups.The improvements in keratometric readings,flattening rate(flattening of the maximum keratometry more than 1 D),3 topographic indices,and vertical coma were significantly better in the CCXL group compared to the ACXL group(P<0.05).The DLD as measured by anterior segment optical coherence tomography or in vivo confocal microscopy was better detectable and significantly deeper in the CCXL group compared to the ACXL group.The deeper DLD was found to be significantly correlated with improvements in the mean keratometry measurements.Progression was noted in 11.1%of eyes in the ACXL group,whereas progression was not observed in any patient eye in the CCXL group.CONCLUSION:In this prospective randomized study,ACXL is less effective in halting the progression of keratoconus at a 2-year follow-up compared to CCXL.
基金supported by the National Natural Science Foundation of China (Grant No. 50575106)High Technology Project of Jiangsu Province, P. R. China (Grant No. BG2007046)
文摘Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation into human body.In this study,UHMWPE and UHMWPE/nano-hydroxyapatite(n-HA)composite were prepared by vacuum hot-pressing method.The prepared materials were irradiated by gamma rays in vacuum and molten heat treated in vacuum just after irradiation.The effect of filling n-HA with gamma irradiation on tribological properties of UHMWPE was investigated by using friction and wear experimental machine(model MM-200)under deionized water lubrication.Micro-morphology of worn surface was observed by metallographic microscope.Contact angle and hardness of the materials were also measured.The results show that contact angle and hardness are changed by filling n-HA and gamma irradiation.Friction coefficient and wear rate under deionized water lubrication are reduced by filling n-HA.While friction coefficient is increased and wear rate is reduced significantly by gamma irradiation.The worn surface of unfilled material is mainly characterized as adhesive wear and abrasive wear,and that of n-HA filled material is mainly characterized as abrasive wear.After gamma irradiation,the degrees of adhesive and abrasive wear for unfilled material and abrasive wear of n-HA filled material are significantly reduced.Unfilled and filled materials after irradiation are mainly shown as slight fatigue wear.The results indicate that UHMWPE and UHMWPE/n-HA irradiated at the dose of 150 kGy can be used as bearing materials in artificial joints for its excellent wear resistance compared to original UHMWPE.
基金supported by National "863" High-tech R & D Program of China(No. 2007AA03Z317)the National Natural Science Foundation of China(No.31070870)+1 种基金"973" Program of the Ministry of Science and Technology of China (No.2007CB714502, 2007CB936000)Shanghai Municipal Committee of Science and Techology (No. 08520740300, 1052nm06100 and 09JC1416500)
文摘Objective: Procyanidins (PC) are widely available natural polyphenols. The present study is designed to investigate if PC can inhibit angiogenesis in lung adenocarcinoma xenografts through crosslinking vascular extracellular matrix (ECM) and preventing proteolysis by matrix metalloproteinases (MMPs). Methods: Using the in vitro MMP-2 proteolysis and in vivo subcutaneous implantation models, we investigated if PC crosslinking inhibits MMP-mediated proteolysis. Using a cultured cell detachment assay, an in vitro angiogenesis assay, and a cell proliferation assay, we investigated if PC inhibits MMP-2-mediated endothelial cell detachment, angiogenesis, and cell proliferation, respectively. Using tumor xenografts, we evaluated if PC can inhibit growth of lung adenocarcinoma. Results: PC crosslink vascular ECM proteins, protecting them against proteolysis by MMPs in vitro and in vivo, protecting cultured human umbilical vein endothelial cells from detachment by MMP-2, and inhibiting in vitro angiogenesis. However, PC (0.75-100 μg/mL) did not inhibit vascular and tumor cells proliferation. PC injections (30 mg PC/kg bodyweight) in situ had anticancer effects on xenografts of lung adenocarcinoma, most likely by inhibiting angiogenesis during ECM proteolysis by MMPs. Conclusion: The results suggest that PC may be important MMP inhibitors that can be used as therapeutic anticancer agents.
文摘AIM: To evaluate the efficacy and safety of corneal collagen crosslinking (01) to prevent the progression of post-laser in situ keratomileusis (LASIK) corneal ectasia. METHODS: In a prospective, nonrandomized, single-centre study, CXL was performed in 20 eyes of 11 patients who had LASIK for myopic astigmatism and subsequently developed keratectasia. The procedure included instillation of 0.1% riboflavin-20% dextrane solution 30 minutes before UVA irradiation and every 5 minutes for an additional 30 minutes during irradiation. The eyes were evaluated preoperatively and at 1-, 3-, 6-, and 12-month intervals. The complete ophthalmologic examination comprised uncorrected visual acuity, best spectacle-corrected visual acuity, endothelial cell count, ultrasound pachymetry, corneal topography, and in vivo confocal microscopy. RESULTS: CXL appeared to stabilise or partially reverse the progression of post-LASIK corneal ectasia without apparent complication in our cohort. UCVA and BCVA improvements were statistically significant (P<0.05)beyond 12 months after surgery (improvement of 0.07 and 0.13 logMAR at 1 year, respectively). Mean baseline flattest meridian keratometry and mean steepest meridian keratometry reduction (improvement of 2.00 and 1.50 diopters (D), respectively) were statistically significant (P < 0.05) at 12 months postoperatively. At 1 year after 01, mean endothelial cell count did not deteriorate. Mean thinnest cornea pachymetry increased significantly. CONCLUSION: The results of the study showed a long-term stability of post-LASIK corneal ectasia after crosslinking without relevant side effects. It seems to be a safe and promising procedure to stop the progression of post-LASIK keratectasia, thereby avoiding or delaying keratoplasty.
基金Funded by the Science and Technology Department Program of Guizhou Province (ZK[2021]162 and [2019]2325)the Special Project of"Doctor Professor Service Group of Kaili University (BJFWT201906)+1 种基金the Cultivation Project of Guizhou University of China ([2019]37)the Camellia Engineering Technology Research Center of Guizhou Province ([2018]5252)。
文摘Epoxy resin (EPR) was used to crosslink with Camellia oleifera Abel.protein to prepare wood adhesive,and the bonding performance and curing characteristics of which were mainly investigated,and the synthesis mechanism was also discussed by using model compounds.The experimental results show that EPR can significantly improve the bonding performance of Camellia oleifera Abel.protein-based adhesive,and the maximum of which reaches 0.72 MPa satisfies the strength requirement of Type II plywood in GB/T 17657-2013.After alkali treatment,the protein can more easily crosslink with EPR at low curing temperature,and the adhesive has high degree of crystallinity of curing products,high degree of crosslinking reaction,and high bonding strength.The reaction mechanism of EPR-modified Camellia oleifera Abel.protein adhesive can be divided into resinification phase and curing phase.
基金Supported by the National Natural Science Foundation of China (20676095)the Program of Introducing Talents of Discipline to Universities (B06006)
文摘Crosslinking treatments for a commercially available aromatic polyamide reverse osmosis membrane were carried out to improve its chlorine resistance.The crosslinking agents including 1,6-hexanediol diglycidyl ether,adipoyl dichloride and hexamethylene diisocyanate ester with long flexible aliphatic chains and high reactivity with N-H groups were used in the experiments.Attenuated total reflective Fourier transform infrared spectra verified the successful preparation of highly crosslinked membranes by crosslinking treatments.It was suggested that the crosslinking agents were connected to membrane surface through the reactions with amine and amide Ⅱ groups,which is confirmed by surface charge measurements.Based on contact angle measurements,crosslinking treatments decreased membrane hydrophilicity by introducing methylene groups to membrane surface.With increasing amount of crosslinking agent molecules connected to membrane surface,the hydrolysis of unconnected functional groups of crosslinking agent produced polar groups and increased membrane hydrophilicity.The highly crosslinked membranes showed higher salt rejections and lower water fluxes as compared with the raw membrane.Since the active sites(N-H groups) vulnerable to free chlorine on membrane surface were eliminated by crosslinking treatments,the chlorine resistances of the highly crosslinked membranes were significantly improved by slighter changes in both water fluxes and salt rejections after chlorination.
文摘In this paper, radiation-induced crosslinking mechanism and characterization of the crosslinking density of F-40 and F-4 by X-ray photoelectron spectroscopy (XPS) have been studied. The dose of gelation of F-40 obtained from XPS is 4.1×10;Gy. It is found that crosslinking density is the largest in the range of certain dose for F-40 and F-4.
基金Supported by the National Natural Science Foundation of China(No.5 0 2 0 30 0 4 )
文摘A new monomer, 1,4-bis(4-fluorobenzoyl) naphthalene(compound 2) was synthesized via a two-step reaction. 1,4-Naphthalenedicarboxylic acid chloride(compound 1) was prepared by using the acyl chlorization reaction of 1,4-naphthalenedicarboxylic acid with thionyl chloride. The Friedel-Crafts acylation of compound 1 with fluorobenzene afforded compound 2 in a 80% yield. The polycondensation of compound 2 with various bisphenols in tetramethylene sulfone(TMS) in the presence of excess potassium carbonate as a condensation reagent was carried out at 210 ℃ to quantitatively afford the corresponding poly(aryl ether ketone)s(compounds 3_8) containing 1,4-naphthalene moieties. Thermal analyses showed that the polymers have T g values ranging from 496 to 500 K and are thermally stable in air with initial mass loss above 500 ℃. These novel polymers exhibited an excellent solubility in organic solvents including NMP, DMAc, and chloroform, etc. In addition, the glass transition temperatures of these polymers increased and the polymers became insoluble in chloroform after treated at 260 ℃, indicating the occurrence of a thermal crosslinking reaction.
基金supports of the China Scholarship Council(CSC)for the author's study(J Wang and X Song)the Alexander von Humboldt Foundation for supporting the work of Dr.N.Szentmary at the Department of Ophthalmology of Saarland University,Homburg/Saar,Germanysupported by"Zentrales Innovationsprogram Mittelstand(ZIM)"of the German Federal Ministry of Economics and Technology(Project number:KF2152004MD0)
文摘Riboflavin-UVA photodynamic inactivation is a potential treatment altemative in therapy resistant infectious keratitis. The purpose of our study was to determine the impact of riboflavin-UVA photodynamic inactivation on viability, apop- tosis and activation of human keratocytes in vitro. Primary human keratocytes were isolated from human corneal buttons and cultured in DMEM/Ham's F12 medium supplemented with 10% fetal calf serum. Keratocytes underwent UVA light illumination (375 nm) for 4.10 minutes (2 J/cm2) during exposure to different concentrations of riboflavin. Twenty-four hours after treatment, cell viability was evaluated photometrically, whereas apoptosis, CD34 and alpha-smooth muscle actin (α-SMA) expression were assessed using flow cytometry. We did not detect significant changes in cell viability, apoptosis, CD34 and α-SMA expression in groups only treated with riboflavin or UVA light. In the group treated with riboflavin-UVA-photodynamic inactivation, viability of keratocytes decreased significantly at 0.1% riboflavin (P〈0.01) while the percentage of CD34 (P〈0.01 for both 0.05% and 0.1% riboflavin) and alpha-SMA positive keratocytes (P〈0.01 and P〈0.05 for 0.05% and 0.1% riboflavin, respectively) increased significantly compared to the controls. There was no significant change in the percentage of apoptotic keratocytes compared to controls at any of the used ribo- flavin concentrations (P=0.09 and P=0.13). We concluded that riboflavin-UVA-photodynamic-inactivation decreases viability of myofibroblastic transformation and multipotent haematopoietic stem cell transformation; however, it does not have an impact on apoptosis of human keratocytes in vitro.
基金the National Natural Science Foundation of China (No.20704040).
文摘The effects of three organic colorants on photo-initiated crosslinking and photo-oxidation degradation of polyethylene (PE) samples irradiated by microwave excited (MWE) UV lamp in the melt and the related mechanism have been studied by gel content and thermal extension rate determinations,X-ray photoelectron spectroscopy (XPS),mechanical property tests,UV spectroscopy,and light microscope.The data from the gel content and thermal extension rate determinations of photo-crosslinked polyethylene (XLPE) sample...
文摘A series of acrylic-based superabsorbent resins were synthesized by inverse suspension polymerization, using potassium persulfate as the initiator, N, N'-methylene bisacrylamide (BIS) and divinylbenzene (DVB) as the multiple crosslinking agents. The morphology of the resulting superabsorbent resins revealed by SEM demonstrated that a hard shell layer was indeed formed due to surface crosslinking. The swelling and deswelling properties, and the mechanical strength of superabsorbents were investigated. The results indicated that the adding time of DVB and the amount of DVB participated in the crosslinking show a significant influence on the properties of superabsorbents. When DVB was added in polymerization later, the amount of DVB participated in reaction decreases and the surface crosslinked shell becomes thinner. It is suitable for DVB to be introduced in the later stage of the polymerization process, because the absorption rate of resin is efficiently improved in conjunction with higher water absorption. Furthermore, it was found that the mechanical strength of swollen superabsorbent with surface crosslinking was indeed enhanced in comparison with that of the conventional one.
基金Supported by the National Natural Science Foundation of China(No. 50973043)
文摘A degradable poly(lactic-co-glycolic acid, LA:GA=80:20)(PLGA) urethral tubular scaffold was fabricated by electrospinning. In order to enhance the mechanical properties, the scaffold was crosslinked with glutaraldehyde. The structure and properties of the crosslinked scaffolds were investigated by the mechanical property testing, scanning electron microscopy(SEM), degradability test in vitro and 3-(4,5)-dimethylthiahiazo(-z-yl)-3,5-diphenytetrazo- liumromide(MTT). The results show that the scaffold has the nano-structure. The pore size and the porosity are suitable for cell seeding, growth and extracellular matrix production. Although influenced by the crosslinking slightly, the pore size and the porosity could still support cell proliferation and tissuse formation. The mechanical properties are remarkably increased by the crosslinking of glutaraldehyde, and it could meet the demands of a urethral stent. The scaffold could completely collapse within 70 d. The results of the biocompatibility test show that the PLGA scaffold had no cytotoxicity.