The aim of the present study was to compare one-step method to EDC/NHS crosslinking (EDC/NHS group) and one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization (EDC/NHS- Heparin group) in i...The aim of the present study was to compare one-step method to EDC/NHS crosslinking (EDC/NHS group) and one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization (EDC/NHS- Heparin group) in improving physiochemical and biological properties of native collagen sponge (Control group). Modified collagen sponge overcome the disadvantages of native collagen sponge. IR spectra suggest the change of the functional groups. DSC data indicate that the stability of caloric transformation in EDC/NHS group is slightly higher than that of EDC/NHS-Heparin group. The crosslinking degree, stability against enzymes, stability in morphologically and biomechanical properties of EDC/NHS-Heparin group are higher than those of EDC/NHS group, whereas, the water-binding capacity in EDC/NHS-Heparin group is lower than that of EDC/NHS group. HUVECs in EDC/NHS-Heparin group scaffold proliferate fast, migrate well and distribute uniformly. One-step simultaneous method gains the better effects in above aspects, heparinized collagen matrices increase in angiogenic potential and suit for defect repairing and tissue engineering.展开更多
Recently,research on hydrogel materials with a porous structure and superior water absorption capabilities significantly grown.However,the hydrogel under gravity-driven separation conditions often exhibit an unstable ...Recently,research on hydrogel materials with a porous structure and superior water absorption capabilities significantly grown.However,the hydrogel under gravity-driven separation conditions often exhibit an unstable pore structure,poor mechanical properties,and limited functionality.To this end,this work presents a novel approach that combines a macro-micro double bionic strategy with a triple crosslinking method to develop a multifunctional alginate composite hydrogel filter(2%-SA-κCG-PVA-Ca^(2+),2%-SKP-Ca^(2+)for short)with a stable pore structure and superior mechanical properties,which possessed an umbrella-shaped structure resembling that of jellyfish.The 2%-SKPCa^(2+)filter was synthesized using polyvinyl alcohol(PVA)as a stable structure-directing agent,and sodium alginate(SA)andκ-carrageenan(κ-CG)as polymer hydrogels.The distinctive umbrellashaped hydrogel of 2%-SKP-Ca^(2+)filter,formed through the triple crosslinking method,overcomes the limitations of unstable pore structure and poor durability seen in hydrogels prepared by traditional crosslinking methods.Furthermore,the utilization of the 2%-SKP-Ca^(2+)filter in water treatment demonstrates its good selective permeability,excellent resistance to fouling,and extended longevity,which enables it to simultaneously achieve the multifunctional water purification and the coating of multi-substrate anti-fouling coatings.Therefore,not only does this research provide an efficient,multifunctional,highly pollution-resistant preparation method for designing a new filter,but it also confirms the application prospect of the macro-micro dual bionic strategy developed in this study in complex water treatment.展开更多
基金Funded by the National Natural Science Foundation of China (10832012)the Natural Science Foudation of Tianjin city(08JCYBJC03400)
文摘The aim of the present study was to compare one-step method to EDC/NHS crosslinking (EDC/NHS group) and one-step simultaneous method to EDC/NHS crosslinking and heparin immobilization (EDC/NHS- Heparin group) in improving physiochemical and biological properties of native collagen sponge (Control group). Modified collagen sponge overcome the disadvantages of native collagen sponge. IR spectra suggest the change of the functional groups. DSC data indicate that the stability of caloric transformation in EDC/NHS group is slightly higher than that of EDC/NHS-Heparin group. The crosslinking degree, stability against enzymes, stability in morphologically and biomechanical properties of EDC/NHS-Heparin group are higher than those of EDC/NHS group, whereas, the water-binding capacity in EDC/NHS-Heparin group is lower than that of EDC/NHS group. HUVECs in EDC/NHS-Heparin group scaffold proliferate fast, migrate well and distribute uniformly. One-step simultaneous method gains the better effects in above aspects, heparinized collagen matrices increase in angiogenic potential and suit for defect repairing and tissue engineering.
基金received generous support from multiple sources,including the Zhejiang Provincial Natural Science Foundation of China(No.LY23D060004)the Science and Technology Planning Project of Zhoushan,China(Nos.2022C41005 and 2019C21007)the National Natural Science Foundation of China(No.51606168).
文摘Recently,research on hydrogel materials with a porous structure and superior water absorption capabilities significantly grown.However,the hydrogel under gravity-driven separation conditions often exhibit an unstable pore structure,poor mechanical properties,and limited functionality.To this end,this work presents a novel approach that combines a macro-micro double bionic strategy with a triple crosslinking method to develop a multifunctional alginate composite hydrogel filter(2%-SA-κCG-PVA-Ca^(2+),2%-SKP-Ca^(2+)for short)with a stable pore structure and superior mechanical properties,which possessed an umbrella-shaped structure resembling that of jellyfish.The 2%-SKPCa^(2+)filter was synthesized using polyvinyl alcohol(PVA)as a stable structure-directing agent,and sodium alginate(SA)andκ-carrageenan(κ-CG)as polymer hydrogels.The distinctive umbrellashaped hydrogel of 2%-SKP-Ca^(2+)filter,formed through the triple crosslinking method,overcomes the limitations of unstable pore structure and poor durability seen in hydrogels prepared by traditional crosslinking methods.Furthermore,the utilization of the 2%-SKP-Ca^(2+)filter in water treatment demonstrates its good selective permeability,excellent resistance to fouling,and extended longevity,which enables it to simultaneously achieve the multifunctional water purification and the coating of multi-substrate anti-fouling coatings.Therefore,not only does this research provide an efficient,multifunctional,highly pollution-resistant preparation method for designing a new filter,but it also confirms the application prospect of the macro-micro dual bionic strategy developed in this study in complex water treatment.