期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
In vivo evidence of IGF-I–estrogen crosstalk in mediating the cortical bone response to mechanical strain 被引量:1
1
作者 Subburaman Mohan Chetan Girijanand Bhat +1 位作者 Jon E Wergedal Chandrasekhar Kesavan 《Bone Research》 SCIE CAS 2014年第1期55-60,共6页
Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling... Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling pathways crosstalk with each other in producing a skeletal response to mechanical loading. To test this, at 5 weeks of age, partial ovariectomy (pOVX) or a sham operation was performed on heterozygous IGF-I conditional knockout (H IGF-I KO) and control mice generated using a Cre-loxP approach. At 10 weeks of age, a 10 N axial load was applied on the right tibia of these mice for a period of 2 weeks and the left tibia was used as an internal non-non-loaded control. At the cortical site, partial estrogen loss reduced total volumetric bone mineral density (BMD) by 5% in control pOVX mice (P=0.05, one-way ANOVA), but not in the H IGF-I KO pOVX mice. At the trabecular site, bone volume/total volume (BV/TV) was reduced by 5%-6% in both control pOVX (P〈0.05) and H IGF-I KO pOVX (P=0.05) mice. Two weeks of mechanical loading caused a 7 %-8% and an 11%-13% (P〈0.05 vs. non-loaded bones) increase in cortical BMD and cortical thickness (Ct.Th), respectively, in the control sham, control pOVX and H IGF-I KO sham groups. By contrast, the magnitude of cortical BMD (4%, P=0.13) and Ct.Th (6%, P〈0.05) responses were reduced by 50% in the H IGF-I KO pOVX mice compared to the other three groups. The interaction between genotype and estrogen deficiency on the mechanical loading-induced cortical bone response was significant (P〈0.05) by two-way ANOVA. Two weeks of axial loading caused similar increases in trabecular BV/TV (13%-17%) and thickness (17%-23%) in all four groups of mice. In conclusion, partial loss of both estrogen and IGF-I significantly reduced cortical but not the trabecular bone response to mechanical loading, providing in vivo evidence of the above crosstalk in mediating the bone response to loading. 展开更多
关键词 BONE IGF estrogen crosstalk in mediating the cortical bone response to mechanical strain
下载PDF
Identification of differentially-expressed genes of rice in overlapping responses to bacterial infection by Xanthomonas oryzae pv.oryzae and nitrogen deficiency 被引量:1
2
作者 YU Chao CHEN Hua-min +4 位作者 TIAN Fang BI Yong-mei Rothstein J Steven Leach E Jan HE Chen-yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第5期888-899,共12页
Bacterial blight of rice caused by Xanthomonas oryzae pv.oryzae(Xoo) is one of high nitrogen(N) responsive diseases.Rice plants became more disease resistant with decreasing N suggesting that the crosstalk between... Bacterial blight of rice caused by Xanthomonas oryzae pv.oryzae(Xoo) is one of high nitrogen(N) responsive diseases.Rice plants became more disease resistant with decreasing N suggesting that the crosstalk between disease resistance and N utilization pathways might exist.However,the co-regulatory components in such crosstalk have not been elucidated.Here,we comparatively analyzed the gene expression profiling of rice under Xoo inoculation,low N treatment,or a combination of both stresses,and identified the differentially-expressed genes(DEGs) in overlapping responses.These DEGs were involved in different biological processes,including innate immunity and nitrogen metabolism.The randomly-selected DEGs expression was validated by quantitative real-time PCR assays.Temporal expression of six genes from different functional categories suggested that N condition was the dominant factor when both stresses were present.These DEGs identified provide novel insights into the coordinated regulatory mechanism in biotic and abiotic stress responses in rice. 展开更多
关键词 Xanthomonas differentially overlapping abiotic blight responsive crosstalk pathogen encoding validated
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部