A large amount of energy is consumed in a coal and gas outburst since a mass of coal is pulverized and ejected, accompanying a great quantity of gas emitted, resulting in a major mining hazard in underground coal mini...A large amount of energy is consumed in a coal and gas outburst since a mass of coal is pulverized and ejected, accompanying a great quantity of gas emitted, resulting in a major mining hazard in underground coal mining around the world. Understanding how potential energy stored in gassy coal seams dissipates in the process of outbursting may possibly be a key to clarify the mechanisms responsible for coal and gas outburst. The present study was aimed to evaluate energy for crushing coal to various size fractions in coal and gas outbursts through theoretical and experimental investigation into the shape of fine coal particles and their equivalent diameter. Theoretical analysis indicates that the shape of a particle has a significant impact both on its equivalent diameter and hence on its outer surface area.Microscopic observations demonstrate the particle fraction with diameters less than 0.075 mm, produced from crushing coal samples, mostly takes on a spherical or ellipsoidal shape, and experimental data also show this part of particles consists of 30%–50% surface area newly generated from crushing operation,though these fine coal accounts for only less than ten percentages by weight. Further, analysis of experimental data indicates that the total surface area of this particle size fraction varies exponentially with input crushing energy, and the specific area energy is not a constant but probably in association with physical properties and textures of material.展开更多
基金financially supported by Natural Science Foundation (Nos.51174241,and 51674049) of ChinaNational Basic Research Program of China (No.2011CB201203)
文摘A large amount of energy is consumed in a coal and gas outburst since a mass of coal is pulverized and ejected, accompanying a great quantity of gas emitted, resulting in a major mining hazard in underground coal mining around the world. Understanding how potential energy stored in gassy coal seams dissipates in the process of outbursting may possibly be a key to clarify the mechanisms responsible for coal and gas outburst. The present study was aimed to evaluate energy for crushing coal to various size fractions in coal and gas outbursts through theoretical and experimental investigation into the shape of fine coal particles and their equivalent diameter. Theoretical analysis indicates that the shape of a particle has a significant impact both on its equivalent diameter and hence on its outer surface area.Microscopic observations demonstrate the particle fraction with diameters less than 0.075 mm, produced from crushing coal samples, mostly takes on a spherical or ellipsoidal shape, and experimental data also show this part of particles consists of 30%–50% surface area newly generated from crushing operation,though these fine coal accounts for only less than ten percentages by weight. Further, analysis of experimental data indicates that the total surface area of this particle size fraction varies exponentially with input crushing energy, and the specific area energy is not a constant but probably in association with physical properties and textures of material.