Uniform crushed straw throwing and seed-sowing machines can achieve the processes of straw chopping,straw transport,sowing,fertilization,and straw mulching at the same time,which is widely used in many areas of China....Uniform crushed straw throwing and seed-sowing machines can achieve the processes of straw chopping,straw transport,sowing,fertilization,and straw mulching at the same time,which is widely used in many areas of China.Conveying device is one of the important components used to convey,elevate and throw straw.However,the problems of high power consumption and congestion affect the promotion of the machine.Therefore,the conveying device of uniform crushed straw throwing and seed-sowing machine was analyzed in order to determine its device operation mechanism.Kinematic and dynamic analyses of particles of crushed rice straw during lifting and dispersion are used to develop a flexible-body model of rod-shaped and agglomerate-shaped crushed straw and a coupling model including the mechanical structure of the device.By integrating computational fluid dynamics and the discrete element method,the gas-solid coupling theory in numerical simulations and motion analysis of crushed straw particles is used to determine how the flow field and motion characteristics affect the conveying performance.Besides,regression equations to describe the relationships between the factors and each assessment index were established by using the regression analysis and response surface analysis with the software Design-Expert.The effect of throwing blade speed X_(1),conveying volume of crushed straw X_(2),and pipeline diameter X_(3) on the throwing speed of crushed straw Y_(1) and specific power consumption Y2 were investigated.The highest throwing speed of crushed straw and lowest specific power consumption are the optimization goal.The results of optimization showed that the predict the best optimal parameters were 2000 r/min throwing blade rotational speed,1.4 kg/s conveying volume,and 220 mm pipeline diameter,the planter achieved a throwing speed of 12.2 m/s and specific power consumption of 9179 m^(2)/s^(2).And then a field test verification was conducted.The planter achieved a throwing speed 12.4 m/s and specific power consumption 9070 m^(2)/s^(2) while selecting the best optimal parameters.Thus,the optimal parameters can provide a high-performance operation and satisfy the actual operation requirements The results provide a theoretical basis and data support for seeding technology innovation and equipment optimization to ensure uniform crushed straw throwing in dense rice stubble fields.展开更多
This article is focused on the investigation of the mechanical and thermal properties of composite material that could be used for the production of plaster or plasterboards.This composite material is made of gypsum a...This article is focused on the investigation of the mechanical and thermal properties of composite material that could be used for the production of plaster or plasterboards.This composite material is made of gypsum and reinforcing natural fibers.The article verifies whether this natural reinforcement can improve the investigated properties compared to conventional plasters and gypsum plasterboards made of pure gypsum.From this composite material,high-strength plasterboards could then be produced,which meet the higher demands of users than conventional gypsum plasterboards.For their production,natural waste materials would be used efficiently.As part of the development of new building materials,it is necessary to specify essential characteristics for their later use in civil engineering.Crushed wheat straw and three gypsum classes with strengths G2(2 MPa)—gypsum Class I.,G5(5 MPa)—gypsum Class II.and G16(16 MPa)—gypsum Class III.were used to create the test samples.Samples were made with different ratios of the two ingredients,with the percentages of straw being 0%,2.5%,and 5%for each gypsum grade.The first part of the article describes how the increasing proportion of straw affects the composite’s mechanical properties(flexural strength and compressive strength).The second part of the article focuses on the change of thermal properties(thermal conductivity and specific heat capacity).The last part of the article mentions the verification of the fire properties(single-flame source fire test and gross heat of combustion)of this composite material.The research has shown that the increasing proportion of straw reinforcement caused a deterioration in the flexural strength(up to 56.49%in the 3.series of gypsum Class II.)and compressive strength(up to 80.27%in the 3.series of gypsum Class III.)and an improvement in the specific heat capacity and thermal conductivity(up to 31.40%in the 3.series).This composite material is thus not suitable for the production of high-strength plasterboards,but its reduced mechanical properties do not prevent its use for interior plasters.Based on the performed fire tests,it can be said that this composite material can be classified as a non-flammable material of reaction to fire Classes A1 or A2.From an ecological point of view,it is advantageous to use a composite material with a higher straw content.展开更多
基金supported by the earmarked fund for CARS-13Natural Science Foundation of Jiangsu Province (Grant No.BK20221187).
文摘Uniform crushed straw throwing and seed-sowing machines can achieve the processes of straw chopping,straw transport,sowing,fertilization,and straw mulching at the same time,which is widely used in many areas of China.Conveying device is one of the important components used to convey,elevate and throw straw.However,the problems of high power consumption and congestion affect the promotion of the machine.Therefore,the conveying device of uniform crushed straw throwing and seed-sowing machine was analyzed in order to determine its device operation mechanism.Kinematic and dynamic analyses of particles of crushed rice straw during lifting and dispersion are used to develop a flexible-body model of rod-shaped and agglomerate-shaped crushed straw and a coupling model including the mechanical structure of the device.By integrating computational fluid dynamics and the discrete element method,the gas-solid coupling theory in numerical simulations and motion analysis of crushed straw particles is used to determine how the flow field and motion characteristics affect the conveying performance.Besides,regression equations to describe the relationships between the factors and each assessment index were established by using the regression analysis and response surface analysis with the software Design-Expert.The effect of throwing blade speed X_(1),conveying volume of crushed straw X_(2),and pipeline diameter X_(3) on the throwing speed of crushed straw Y_(1) and specific power consumption Y2 were investigated.The highest throwing speed of crushed straw and lowest specific power consumption are the optimization goal.The results of optimization showed that the predict the best optimal parameters were 2000 r/min throwing blade rotational speed,1.4 kg/s conveying volume,and 220 mm pipeline diameter,the planter achieved a throwing speed of 12.2 m/s and specific power consumption of 9179 m^(2)/s^(2).And then a field test verification was conducted.The planter achieved a throwing speed 12.4 m/s and specific power consumption 9070 m^(2)/s^(2) while selecting the best optimal parameters.Thus,the optimal parameters can provide a high-performance operation and satisfy the actual operation requirements The results provide a theoretical basis and data support for seeding technology innovation and equipment optimization to ensure uniform crushed straw throwing in dense rice stubble fields.
基金This article was financed from the budget of the Student Grant Competition VSB-TUO(Registration No.SGS SP2020/135)This article has been elaborated in the framework of scholarship of the City of Ostrava(RRC/2806/2019)+1 种基金in the framework of the grant programme“Support for Science and Research in the Moravia-Silesia Region 2018”(RRC/10/2018)financed from the budget of the Moravian-Silesian Region.
文摘This article is focused on the investigation of the mechanical and thermal properties of composite material that could be used for the production of plaster or plasterboards.This composite material is made of gypsum and reinforcing natural fibers.The article verifies whether this natural reinforcement can improve the investigated properties compared to conventional plasters and gypsum plasterboards made of pure gypsum.From this composite material,high-strength plasterboards could then be produced,which meet the higher demands of users than conventional gypsum plasterboards.For their production,natural waste materials would be used efficiently.As part of the development of new building materials,it is necessary to specify essential characteristics for their later use in civil engineering.Crushed wheat straw and three gypsum classes with strengths G2(2 MPa)—gypsum Class I.,G5(5 MPa)—gypsum Class II.and G16(16 MPa)—gypsum Class III.were used to create the test samples.Samples were made with different ratios of the two ingredients,with the percentages of straw being 0%,2.5%,and 5%for each gypsum grade.The first part of the article describes how the increasing proportion of straw affects the composite’s mechanical properties(flexural strength and compressive strength).The second part of the article focuses on the change of thermal properties(thermal conductivity and specific heat capacity).The last part of the article mentions the verification of the fire properties(single-flame source fire test and gross heat of combustion)of this composite material.The research has shown that the increasing proportion of straw reinforcement caused a deterioration in the flexural strength(up to 56.49%in the 3.series of gypsum Class II.)and compressive strength(up to 80.27%in the 3.series of gypsum Class III.)and an improvement in the specific heat capacity and thermal conductivity(up to 31.40%in the 3.series).This composite material is thus not suitable for the production of high-strength plasterboards,but its reduced mechanical properties do not prevent its use for interior plasters.Based on the performed fire tests,it can be said that this composite material can be classified as a non-flammable material of reaction to fire Classes A1 or A2.From an ecological point of view,it is advantageous to use a composite material with a higher straw content.