The Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage.The morphologies of pebble grains were obtai...The Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage.The morphologies of pebble grains were obtained using white light 3D laser scanning and image processing.A grain shape library was constructed for grain shape analysis with different shape descriptors.The use of the shape library and grain stability analysis is discussed for a suggested procedure to rotate a grain to its most stable configuration.Single grain crushing tests were performed for 30 pebbles to obtain force-displacement curves and fracture patterns.Each grain was compressed diametrically between flat platens.As expected,the values of the stress at bulk fracture follow a Weibull distribution.A procedure for generating crushable agglomerates with realistic particle shapes was demonstrated,which was accomplished in the discrete element modeling(DEM)of the single grain crushing test.The work presented here is novel in that both the heterogeneous micro-structures and randomly distributed flaws are considered.The DEM results demonstrate that the proposed modeling approach and calibrated parameters are reliable and can reflect the crushing behavior of rock pebbles.Finally,three parametric studies were presented evaluating the effects of micro-crack density,micro-crack disorder,and grain morphology on the Weibullian behavior of the crushing strength,none of which has previously been thoroughly considered.These three studies provide a deeper insight into the origin of the Weibullian behavior of single grain crushing strength.展开更多
In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed fo...In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed for the California bearing ratio (CBR) test on GGRs. The effects of different testing conditions and micro-mechanical parameters used in the model on the CBR numerical results have been systematically studied. The reliability of the numerical technique is verified. The numerical results suggest that the influences of the loading rate and Poisson's ratio on the CBR numerical test results are not significant. As such, a loading rate of 1.0-3.0 mm/min, a piston diameter of 5 cm, a specimen height of 15 cm and a specimen diameter of 15 cm are adopted for the CBR numerical test. The numerical results reveal that the GBR values increase with the friction coefficient at the contact and shear modulus of the rocks, while the influence of Poisson's ratio on the GBR values is insignificant. The close agreement between the CBR numerical results and experimental results suggests that the numerical simulation of the CBR values is promising to help assess the mechanical properties of GGRs and to optimize the grading design. Be- sides, the numerical study can provide useful insights on the mesoscopic mechanism.展开更多
基金financial support by the National Key R&D Program of China (No. 2017YFC0404801)National Natural Science Foundation of China (Grant Nos. 51579193 and 51779194)Major Special Project of Guizhou Science Cooperation (No.[2017]3005-2)
文摘The Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage.The morphologies of pebble grains were obtained using white light 3D laser scanning and image processing.A grain shape library was constructed for grain shape analysis with different shape descriptors.The use of the shape library and grain stability analysis is discussed for a suggested procedure to rotate a grain to its most stable configuration.Single grain crushing tests were performed for 30 pebbles to obtain force-displacement curves and fracture patterns.Each grain was compressed diametrically between flat platens.As expected,the values of the stress at bulk fracture follow a Weibull distribution.A procedure for generating crushable agglomerates with realistic particle shapes was demonstrated,which was accomplished in the discrete element modeling(DEM)of the single grain crushing test.The work presented here is novel in that both the heterogeneous micro-structures and randomly distributed flaws are considered.The DEM results demonstrate that the proposed modeling approach and calibrated parameters are reliable and can reflect the crushing behavior of rock pebbles.Finally,three parametric studies were presented evaluating the effects of micro-crack density,micro-crack disorder,and grain morphology on the Weibullian behavior of the crushing strength,none of which has previously been thoroughly considered.These three studies provide a deeper insight into the origin of the Weibullian behavior of single grain crushing strength.
基金supported by the Program for New Century Excellent Talents in University (NCET-08-0749)Fundamental Research Funds for the Central Universities (CHD2012JC054)
文摘In order to better understand the mechanical properties of graded crushed rocks (GCRs) and to optimize the relevant design, a numerical test method based on the particle flow modeling technique PFC2D is developed for the California bearing ratio (CBR) test on GGRs. The effects of different testing conditions and micro-mechanical parameters used in the model on the CBR numerical results have been systematically studied. The reliability of the numerical technique is verified. The numerical results suggest that the influences of the loading rate and Poisson's ratio on the CBR numerical test results are not significant. As such, a loading rate of 1.0-3.0 mm/min, a piston diameter of 5 cm, a specimen height of 15 cm and a specimen diameter of 15 cm are adopted for the CBR numerical test. The numerical results reveal that the GBR values increase with the friction coefficient at the contact and shear modulus of the rocks, while the influence of Poisson's ratio on the GBR values is insignificant. The close agreement between the CBR numerical results and experimental results suggests that the numerical simulation of the CBR values is promising to help assess the mechanical properties of GGRs and to optimize the grading design. Be- sides, the numerical study can provide useful insights on the mesoscopic mechanism.