期刊文献+
共找到877篇文章
< 1 2 44 >
每页显示 20 50 100
Molybdenum isotope composition of the upper mantle and its origin:insight from mid-ocean ridge basalt
1
作者 Shuo CHEN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期705-708,共4页
The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition ... The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling. 展开更多
关键词 molybdenum(Mo)isotope mantle crustal recycling mid-ocean ridge basalt(MORB)
下载PDF
Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography 被引量:30
2
作者 Xinlei Sun Xiaodong Song +2 位作者 Sihua Zheng Yingjie Yang Michael H. Ritzwoller 《Earthquake Science》 CSCD 2010年第5期449-463,共15页
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the Chin... We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust. 展开更多
关键词 ambient noise surface wave TOMOGRAPHY crust and upper mantle China
下载PDF
Crust-Mantle Structure and Coupling Effects on Mineralization : An Example from Jiaodong Gold Ore Deposits Concentrating Area, China 被引量:17
3
作者 YangLiqiang DengJun +2 位作者 ZhangZhongjie WangGuangjie WangJianping 《Journal of China University of Geosciences》 SCIE CSCD 2003年第1期42-51,共10页
Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the info... Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system . 展开更多
关键词 geophysical field crust mantle structure coupling effect dynamics of mineralization Jiaodong area of China.
下载PDF
Surface wave tomography of the crust and upper mantle of Chinese mainland and its neighboring region 被引量:5
4
作者 何正勤 丁志峰 +2 位作者 叶太兰 孙为国 张乃铃 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2001年第6期634-641,共8页
The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, bas... The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, based on 25 wave group velocities for the periods from 10 s to 92 s, measured from long period Rayleigh waves recorded by 11 stations of CDSN and 12 digital seismometers surrounding China. The S wave velocity image is shown on two latitudinal sections along 30°N and 38°N, two longitudinal sections along 90°E and 120°E, and four horizontal slices at the different depths. 展开更多
关键词 Rayleigh wave seismic tomography the Chinese mainland crust and upper mantle velocity structure
下载PDF
Group velocity distribution of Rayleigh waves and crustal and upper mantle velocity structure of the Chinese mainland and its vicinity 被引量:5
5
作者 何正勤 丁志峰 +2 位作者 叶太兰 孙为国 张乃铃 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第3期269-275,共7页
Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods ... Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period. 展开更多
关键词 Rayleigh wave group velocity distribution crust and upper mantle velocity structure
下载PDF
Stagnant lids and mantle overturns:Implications for Archaean tectonics, magmagenesis,crustal growth, mantle evolution, and the start of plate tectonics 被引量:29
6
作者 Jean H.Bédard 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第1期19-49,共31页
The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-... The lower plate is the dominant agent in modern convergent margins characterized by active subduction,as negatively buoyant oceanic lithosphere sinks into the asthenosphere under its own weight.This is a strong plate-driving force because the slab-pull force is transmitted through the stiff sub-oceanic lithospheric mantle.As geological and geochemical data seem inconsistent with the existence of modernstyle ridges and arcs in the Archaean,a periodically-destabilized stagnant-lid crust system is proposed instead.Stagnant-lid intervals may correspond to periods of layered mantle convection where efficient cooling was restricted to the upper mantle,perturbing Earth's heat generation/loss balance,eventually triggering mantle overturns.Archaean basalts were derived from fertile mantle in overturn upwelling zones(OUZOs),which were larger and longer-lived than post-Archaean plumes.Early cratons/continents probably formed above OUZOs as large volumes of basalt and komatiite were delivered for protracted periods,allowing basal crustal cannibalism,garnetiferous crustal restite delamination,and coupled development of continental crust and sub-continental lithospheric mantle.Periodic mixing and rehomogenization during overturns retarded development of isotopically depleted MORB(mid-ocean ridge basalt)mantle.Only after the start of true subduction did sequestration of subducted slabs at the coremantle boundary lead to the development of the depleted MORB mantle source.During Archaean mantle overturns,pre-existing continents located above OUZOs would be strongly reworked;whereas OUZOdistal continents would drift in response to mantle currents.The leading edge of drifting Archaean continents would be convergent margins characterized by terrane accretion,imbrication,subcretion and anatexis of unsubductable oceanic lithosphere.As Earth cooled and the background oceanic lithosphere became denser and stiffer,there would be an increasing probability that oceanic crustal segments could founder in an organized way,producing a gradual evolution of pre-subduction convergent margins into modern-style active subduction systems around 2.5 Ga.Plate tectonics today is constituted of:(1)a continental drift system that started in the Early Archaean,driven by deep mantle currents pressing against the Archaean-age sub-continental lithospheric mantle keels that underlie Archaean cratons;(2)a subduction-driven system that started near the end of the Archaean. 展开更多
关键词 ARCHAEAN mantle-overturn Stagnant-lid Continental crust OCEANIC crust Subcretion
下载PDF
Recycled oceanic crust as a source for tonalite intrusions in the mantle section of the Khor Fakkan block, Semail ophiolite(UAE) 被引量:2
7
作者 Hosung Joun Sotirios Kokkalas Stylianos Tombros 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第3期1187-1210,共24页
Several types of felsic granitoid rocks have been recognized, intrusive in both the mantle and the crustal sequence of the Semail ophiolite. Several models have been proposed for the source of this suite of tonalites,... Several types of felsic granitoid rocks have been recognized, intrusive in both the mantle and the crustal sequence of the Semail ophiolite. Several models have been proposed for the source of this suite of tonalites, granodiorites, trondhjemites intrusions, however their genesis is still not clearly understood.The sampled Dadnah tonalites that intruded in the mantle section of the Semail ophiolite display arctype geochemical characteristics, are high siliceous, low-potassic, metaluminous to weakly peraluminous, enriched in LILE, show positive peaks for Ba, Pb, Eu, negative troughs for U, Ti and occur with low δ^(18)O_(H_2 O), moderate ε_(Sr) and negative eNd values. They have crystallized at temperatures that range from~550 ℃ to ~720 ℃ and pressure ranging from 4.4 kbar to 6.5 kbar. The isotopic ages from our tonalite samples range between 98.6 Ma and 94.9 Ma, slightly older and overlapping with the age of the metamorphic sole. Our field observations, mineralogical, petrological, geochemical, isotopic and melt inclusion data suggest that the Dadnah tonalites formed by partial melting(~10%-15% continuous or ~12% batch partial melting), accumulation of plagioclase, fractional crystallization(~55%-57%), and interaction with their host harzburgites. These tonalites were the end result of partial melting and subsequent contamination and mixing of ~4% oceanic sediments with ~96% oceanic lithosphere from the subducted slab. This MORB-type slab melt composed from ~97% recycled oceanic crust and ~3% of the overlying mantle.We suggest that a possible protolith for these tonalites was the basaltic lavas from the subducted oceanic slab that melted during the initial stages of the supra-subduction zone(SSZ), which was forming synchronously to the spreading ridge axis. The tonalite melts mildly modified due to low degree of mixing and interaction with the overlying lithospheric mantle. Subsequently, the Dadnah tonalites emplaced at the upper part of the mantle sequence of the Semail ophiolite and are geochemically distinct from the other mantle intrusive felsic granitoids to the south. 展开更多
关键词 Tonalites Felsic GRANITOIDS Recycled oceanic crust SOURCE contribution Partial melting Melt inclusions
下载PDF
Crustal stress field in Yunnan: implication for crust-mantle coupling 被引量:20
8
作者 Zhigang Xu Zhouchuan Huang +6 位作者 Liangshu Wang Mingjie Xu Zhifeng Ding Pan Wang Ning Mi Dayong Yu Hua Li 《Earthquake Science》 CSCD 2016年第2期105-115,共11页
We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous r... We applied the g CAP algorithm to determine 239 focal mechanism solutions 3:0≤MW≤ 6:0) with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere. 展开更多
关键词 TIBET YUNNAN Focal mechanism solution Stress field crust-mantle coupling
下载PDF
Observation of Catastrophic Degassing from Mantle-Crust in Yinggehai Basin, South China Sea 被引量:2
9
作者 ChenHonghan JohnParnell +1 位作者 GongZaisheng LiSitian 《Journal of China University of Geosciences》 SCIE CSCD 2004年第3期295-305,共11页
To lower the CO 2 risk for hydrocarbon exploration in the west continental shelf of Yinggehai basin, South China Sea, we do attempt not only to know the CO 2 origins, but also to make an understanding of the degassi... To lower the CO 2 risk for hydrocarbon exploration in the west continental shelf of Yinggehai basin, South China Sea, we do attempt not only to know the CO 2 origins, but also to make an understanding of the degassing processes from the mantle and crust. Based on the stable carbon isotope ratios of CO 2 alone, the organic and inorganic CO 2 can be successively distinguished, but the formation conditions and mixing processes for inorganic CO 2 are still not clear. The relationships between lg[R(= 3He/ 4He)/R a(=1.386×10 -6)] and CO 2 content (%), CO 2/ 3He and δ 13C CO 2 have been employed, respectively, to obtain that the CO 2 gases in the reservoirs can be classified into three categories: (1) organic CO 2 with very low contents but contaminated by mantle-derived helium; (2) inorganic CO 2 gases with lower to higher contents being mixtures of crustal CO 2 with mantle-derived CO 2, the mantle- contributed percentage being in the range of 0 %-27 %, and (3) mainly crust-derived inorganic CO 2 gases being characterized by high contents (more than 50 %) and indicating the crustal addition by metamorphism of rich-in carbon rocks in basement. Nevertheless, some CO 2/ 3He ratios of organic CO 2 fall into the range 10 8-10 10, which made us inquire whether the CO 2/ 3He=(1-10)×10 9 can be the unique signature of magmatic CO 2 or not. All the observation of plutonic activities, fluid inclusion measurements in gas reservoirs, pre-stack depth/time seismic sections and the satellite infrared remote photography taken from Yinggehai basin, South China Sea, during Chichi earthquake in Taiwan on September 21, 1999, supports that the degassing processes are in a discontinuous mode, which may be triggered by igneous intrusion or extrusion, or earthquakes. In the central diapir zone of the basin, at least 3 to 4 orders of discharge of across-formational thermal fluid flows through fractures can be determined in different scales. The mantle degassing process may have a strong effect on overpressured system forming and outgassing in crust. However, it is very difficult to estimate the transferring rates for a special fractured zone at a specific time interval. 展开更多
关键词 carbon dioxide and helium degassing from mantle and crust Yinggehai basin.
下载PDF
Study on crust-mantle tectonics and its velocity structure along the Beijing-Huailai-Fengzhen profile 被引量:4
10
作者 祝治平 张先康 +3 位作者 张建狮 张成科 赵金仁 徐朝凡 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第5期62-70,共9页
In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai ... In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area. 展开更多
关键词 crust mantle velocity structure deep crustal fault wide angle reflection/refraction
下载PDF
Study on the crust-mantle structure in the central and southern parts of Shanxi 被引量:3
11
作者 祝治平 张建狮 +7 位作者 张成科 赵金仁 刘明清 唐周琼 盖玉杰 任青芳 聂文英 杨清 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第1期46-54,共9页
Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regio... Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regions, through which the five profiles pass, there exist anomalous crust mantle structure and abyssal crustal faults extending to Moho, all being regarded as the deep indications for earthquake occurrence. 展开更多
关键词 the central and southern parts of Shanxi deep seismic sounding crust mantle structure and deep tectonics
下载PDF
Mantle/Crust Evolution and Eco-Environmental Effects as Exemplified by Zhangjiakou-West Beijing Region 被引量:5
12
作者 牛树银 孙爱群 +4 位作者 李红阳 侯泉林 宋立军 王宝德 许传诗 《Chinese Journal Of Geochemistry》 EI CAS 2004年第1期1-14,共14页
The living circumstances of human beings are closely related to the geological environment. As exemplified by the Zhangjiakou-West Beijing region, this paper describes the intensive mantle-crust uplift, which led to a... The living circumstances of human beings are closely related to the geological environment. As exemplified by the Zhangjiakou-West Beijing region, this paper describes the intensive mantle-crust uplift, which led to anomalous element background values for regional rocks (ores) and soils. As a result, some agricultural crops, and forests and fruits are of “super-quality and high yield” or of “poor quality and low yield”. The anomalous elements can find their way into grains, fruits, vegetables and drinking water and then will be taken by human beings, constituting a food chain, which would directly impact human health and lead to the spread of some endemic diseases. Studies have shown that the geomorphological features in the Zhangjiakou-West Beijing region are the outcome of geotectonic evolution since the Mesozoic. Mantle-crust movement is the key factor leading to the evolution and change of the regionally geological environment. 展开更多
关键词 地质环境 岩石 土壤 农作物 水果 饮水 人类健康
下载PDF
Crust-Mantle Structures and Gold Enrichment Mechanism of Mantle Fluid System 被引量:3
13
作者 邓军 孙忠实 +1 位作者 王庆飞 韦延光 《Chinese Journal Of Geochemistry》 EI CAS 2003年第3期263-270,共8页
Gold enrichment mechanism of ore-forming fluid is the essenc e of gold metallization. This paper summarizes the distinguishing symbols of man tle fluid and effect of crust-mantle structure on fluid movement. Fluid mov... Gold enrichment mechanism of ore-forming fluid is the essenc e of gold metallization. This paper summarizes the distinguishing symbols of man tle fluid and effect of crust-mantle structure on fluid movement. Fluid moving processes include osmosis, surge, gas-liquid alternation and mutation of fluid speed. During fluid movement, gold will be enriched gradually. Finally, a layere d circulatory system is illustrated in this paper. 展开更多
关键词 地壳-地层相互作用 金矿床 聚集运动 富集机制 储集层流动系统
下载PDF
Petrogenesis of the Late Triassic shoshonitic Shadegai pluton from the northern North China Craton: Implications for crust-mantle interaction and post-collisional extension 被引量:2
14
作者 Liqiong Jia Liang Wang +2 位作者 Genhou Wang Shibin Lei Xuan Wu 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第2期595-610,共16页
Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan a... Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan area has shoshonitic affinity and I-type character, and is composed of syenogranites containing abundant mafic microgranular enclaves(MMEs). LA-MC-ICP-MS U-Pb data yield weighted mean 206 Pb/238 U ages of 222 ± 1 Ma and 221 ± 1 Ma for the syenogranites and MMEs, respectively, suggesting their coeval formation during the Late Triassic. The syenogranites have high SiO_2(70.42-72.30 wt%),K_2O(4.58-5.22 wt.%) and Na_2O(4.19-4.43 wt.%) contents but lower concentrations of P_2O_5(0.073-0.096 wt.%) and TiO_2(0.27-0.37 wt.%), and are categorized as I-type granites, rather than A-type granites, as previously thought. These syenogranites exhibit lower(^(87)Sr/^(86)Sr)i ratios(0.70532-0.70547) and strongly negative whole-rock εNd(t) values(-12.54 to-11.86) and zircon εHf(t) values(-17.81 to-10.77),as well as old Nd(1962-2017 Ma) and Hf(2023-2092 Ma) model ages, indicating that they were derived from the lower crust.Field and petrological observations reveal that the MMEs within the pluton probably represent magmatic globules commingled with their host magmas. Geochemically, these MMEs have low SiO_2(53.46-55.91 wt.%)but high FeOt(7.27-8.79 wt.%) contents. They are enriched in light rare earth elements(LREEs) and large ion lithophile elements(LILEs), and are depleted in heavy rare earth elements(HREEs) and high field strength elements(HFSEs). They have whole-rock(^(87)Sr/^(86)Sr)i ratios varying from 0.70551 to 0.70564, εNd(t) values of -10.63 to -9.82, and zircon εHf(t) values of -9.89 to 0.19. Their geochemical and isotopic features indicate that they were derived from the subcontinental lithospheric mantle mainly metasomatized by slab-derived fluids, with minor involvement of melts generated from the ascending asthenospheric mantle. Petrology integrated with elemental and isotopic geochemistry suggest that the Shadegai pluton was produced by crust-mantle interactions, i.e., partial melting of the lower continental crust induced by underplating of mantle-derived mafic magmas(including the subcontinental lithospheric mantle and asthenospheric mantle), and subsequent mixing of the mantle-and crust-derived magmas. In combination with existing geological data, it is inferred that the Shadegai pluton formed in a post-collisional extensional regime related to lithospheric delamination following the collision between the NCC and Mongolia arc terranes. 展开更多
关键词 Magma mixing crust-mantle interaction LITHOSPHERIC delamination POST-COLLISION North China CRATON
下载PDF
Cenozoic volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, China: Petrochemical evidence for partial melting of the mantle-crust transition zone 被引量:3
15
作者 LAI Shaocong QIN Jiangfeng LI Yongfeng LIU Xin 《Chinese Journal Of Geochemistry》 EI CAS 2007年第3期305-311,共7页
Neogene volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, are represented by a typical intermediate-basic and intermediate alkaline rock association, with latite-trachyte as the main rock type. The resul... Neogene volcanic rocks in the Belog Co area, Qiangtang, northern Tibet, are represented by a typical intermediate-basic and intermediate alkaline rock association, with latite-trachyte as the main rock type. The results of chemical analysis are: SiO2=52%–62%, Al2O3>15%, Na2O/K2O>1 and MgO<3.30%. In addition, the volcanic rocks are LREE-enriched with LREE/HREE=10–13, (La/Yb)N=15–19, and show a weak negative Eu anomaly with δEu=0.71–0.89. The close relationship between Mg# and SiO2 and the co-variation of the magmatophile elements and ultra-magmatophile elements such as La/Sm-La and Cr-Tb indicate that this association of volcanic rocks is the product of comagmatic fractional crystallization. The rock association type and lower Sm/Yb values (Sm/Yb=3.23–3.97) imply that this association of volcanic rocks should have originated from partial melting of spinel lherzolite in the lithospheric mantle. On the other hand, the weak negative Eu anomaly and relative depletion in Nb, Ta and Ti reflect the features of terrigenous magma. So the Neogene Belog Co alkaline volcanic rocks should be the result of partial melting of the special crust-mantle transition zone on the Qinghai-Tibet Plateau. 展开更多
关键词 新生火山岩石 地幔 变迁地带 青藏高原
下载PDF
P-wave velocity structure in the crust and the uppermost mantle of Chao Lake region of the Tan-Lu Fault inferred from teleseismic arrival time tomography 被引量:1
16
作者 Bem Shadrach Terhemba Huajian Yao +3 位作者 Song Luo Lei Gao Haijiang Zhang Junlun Li 《Earthquake Science》 2022年第6期427-447,共21页
Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth part... Chao Lake is a Geoheritage site on the active Tan-Lu Fault between the Yangtze craton,the North China craton,and the Dabie orogenic belt in the southeast.This segment of the fault is not well constrained at depth partly due to the overprinting of the fault zone by intrusive materials and its relatively low seismic activity and sparse seismic station coverage.This study took advantage of a dense seismic array deployed around Chao Lake to delineate the P-wave velocity variations in the crust and uppermost mantle using teleseismic earthquake arrival time tomography.The station-pair double-difference with waveform crosscorrelation technique was employed.We used a multiscale resolution 3-D initial model derived from the combination of highresolution 3-D v S models within the region of interest to account for the lateral heterogeneity in the upper crust.The results revealed that the velocity of the upper crust is segmented with structures trending in the direction of the strike of the fault.Sedimentary basins are delineated on both sides of the fault with slow velocities,while the fault zone is characterized by high velocity in the crust and uppermost mantle.The high-velocity structure in the fault zone shows characteristics of magma intrusion that may be connected to the Mesozoic magmatism in and around the Middle and Lower Yangtze River Metallogenic Belt(MLYMB),implying that the Tan-Lu fault might have formed a channel for magma intrusion.Magmatic material in Chao Lake is likely connected to the partial melting,assimilation,storage,and homogenization of the uppermost mantle and the lower crustal rocks.The intrusions,however,seem to have suffered severe regional extension along the Tan-Lu fault driven by the eastward Paleo-Pacific plate subduction,thereby losing its deep trail due to extensional erosion. 展开更多
关键词 teleseismic arrival time tomography v P velocity structure crust and uppermost mantle Tan-Lu Fault Chao Lake
下载PDF
Sulphide melt evolution in upper mantle to upper crust magmas,Tongling, China 被引量:1
17
作者 Yilun Du Xinlong Qin +3 位作者 Calvin G.Barnes Yi Cao Qian Dong Yangsong Du 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第2期237-248,共12页
Sulphide inclusions, which represent melts trapped in the minerals of magmatic rocks and xenoliths, provide important clues to the behaviour of immiscible sulphide liquids during the evolution of magmas and the format... Sulphide inclusions, which represent melts trapped in the minerals of magmatic rocks and xenoliths, provide important clues to the behaviour of immiscible sulphide liquids during the evolution of magmas and the formation of NieCueFe deposits. We describe sulphide inclusions from unique ultramafic clots within mafic xenoliths, from the mafic xenoliths themselves, and from the three silica-rich host plutons in Tongling, China. For the first time, we are able to propose a general framework model for the evolution of sulphide melts during the evolution of mafic to felsic magmas from the upper mantle to the upper crust. The model improves our understanding of the sulphide melt evolution in upper mantle to upper crust magmas, and provides insight into the formation of stratabound skarn-type FeeCu polymetallic deposits associated with felsic magmatism, thus promising to play an important role during prospecting for such deposits. 展开更多
关键词 Ore petrology Intermediate-acidic intrusion Lower Yangtze River Valley Sulfide inclusions Upper mantle to upper crust
下载PDF
Upper crustal anisotropy from local shear-wave splitting and crust-mantle coupling of Yunnan,SE margin of Tibetan Plateau 被引量:2
18
作者 Bo Zhang Shuangxi Zhang +1 位作者 Tengfei Wu Yujin Hua 《Geodesy and Geodynamics》 2018年第4期302-311,共10页
The upper crustal anisotropy of Yunnan area, SE margin of Tibetan Plateau, is investigated by measuring the shear wave splitting of local earthquakes. The mean value of the measured delay times is 0.054 s and far less... The upper crustal anisotropy of Yunnan area, SE margin of Tibetan Plateau, is investigated by measuring the shear wave splitting of local earthquakes. The mean value of the measured delay times is 0.054 s and far less than that from Pms splitting analysis, indicating that the crustal anisotropy is contributed mostly from mid-lower crust. The fast polarization directions are mostly sub-parallel to the maximum horizontal compression directions while the stations near fault zones show fault-parallel fast polarization directions, suggesting both stress and geological structure contribute to the upper crust anisotropy.Comparing fast polarization directions from shear wave splitting of local earthquakes and Pms, large angle differences are shown at most stations, implying different anisotropy properties between upper and mid-lower crust. However, in southwestern Yunnan, the fast polarization directions of Pms and Swave splitting are nearly parallel, and the stress and surface strain rate directions show strong correlation, which may indicate that the surface and deep crust deformations can be explained by the same mechanism and the surface deformation can represent the deformation of the whole crust. Therefore,the high correlation between surface strain and mantle deformation in this area suggests the mechanical coupling between crust and mantle in southwestern Yunnan. In the rest region of Yunnan, the crustmantle coupling mechanisms are supported by the lack of significant crustal anisotropy with Ne S fast polarization directions from Pms splitting. Therefore, we conclude that the crust and upper mantle are coupled in Yunnan, SE margin of Tibetan Plateau. 展开更多
关键词 Shear wave splitting Stress Strain rate Yunnan area crust-mantle coupling
下载PDF
Study of crust-mantle transitional zone along the northeast margin of Qinghai-Xizang plateau 被引量:1
19
作者 LAI Xiao-ling(赖晓玲) +3 位作者 ZHANG Xian-kang(张先康) FANG Sheng-ming(方盛明) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第2期144-151,共8页
This study deals with complexity, frequency spectrum and velocity model of the crust-mantle transitional zone in different tectonic units along the northeast margin of Qinghai-Xizang plateau, based on PmP waveform dat... This study deals with complexity, frequency spectrum and velocity model of the crust-mantle transitional zone in different tectonic units along the northeast margin of Qinghai-Xizang plateau, based on PmP waveform data from two deep seismic sounding profiles passing through the area. It reveals that Moho has stable tectonic features in Ordos and Lingzhong basins, where crust and mantle are coupled as first-order discontinuity. Moho shows obvious signs of activity in Haiyuan seismic region and in the contact zone between Bayanhar block and Qaidam block. Crust and mantle in these two areas are coupled as complicated crust-mantle transitional zone consisting of multiple laminae with alternate high and low velocities, totaling 20 km in thickness. The difference between Moho of different tectonic units reflects heterogeneity of the coupled crust-mantle zone; the difference between fine structures of Haiyuan seismic region and Maqin fault zone reflects different deep material composition of the two continent-continent collision zones and the interaction between blocks. 展开更多
关键词 crust-mantle transitional zone tectonic units Haiyuan seismic region Maqin fault zone
下载PDF
SEISMIC STUDIES ON THE CRUST-MANTLE STRUCTURE ACROSS KARAMAY-KUCHA IN XINJIANG, CHINA
20
作者 Xue Guangqi 1, Jiang Mei 1,Qian Hui 2, Wei Suhua 2,Dong Yingjun 3, Gerard Wittlinger 4,Georges Poupinet 5,Edi Kissling 6 2 Ph.D 97 of China University of Geosciences,Beijin 《地学前缘》 EI CAS CSCD 2000年第S1期78-78,共1页
Reversions as receiver functions and ACH were performed using the teleseismic data acquired from the seismic array that were deployed across Tian Shan in Xinjiang in 1997\|1998 jointly by Sino\|French seismic crew.The... Reversions as receiver functions and ACH were performed using the teleseismic data acquired from the seismic array that were deployed across Tian Shan in Xinjiang in 1997\|1998 jointly by Sino\|French seismic crew.The results suggest the crustal shortening and thickening in the study area that are well expressed by the thickening in lower crust and the uplifting of Tian Shan in the collision between Euro\|Asian and Indian plates. Underthrusting in the intra\|continental collision model turns out to be asymmetrical, with the northward in the south much stronger than the southward in the north. The cause of the steepness of the southward underthrust is likely to rest on the strong extrusion. Going further deep, the curving end of the cold underthrusting zone may detach, penetrating its own way. The ongoing uplifting of Tian Shan is given birth mostly by the underthrusting on its south and the squeezing force from both sides. The underthrusting zone is composed of compact ancestral crystalline rocks. The thickness of the crust varys from 65km beneath the main body of Tian Shan to 41km beneath the Tarim and Zengar basins on sides with certain degree of thickening. The major faulting zones in the area go precipitously in the scope of crust, with those in the low\|velocity bodies closely associated to the activities of molten mantle materials and seismicity. 展开更多
关键词 Tian Shan crust mantle underthrust
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部