The Longgouhe and Ershiyizhan intrusions of the Late Jurassic, located in the Upper Heilongjiang Basin of the northern Great Hinggan Range, are closely related to porphyry Cu-Au mineralizations. In lithology the intru...The Longgouhe and Ershiyizhan intrusions of the Late Jurassic, located in the Upper Heilongjiang Basin of the northern Great Hinggan Range, are closely related to porphyry Cu-Au mineralizations. In lithology the intrusions are quartz diorite, quartz monzodiorite and granodiorite of high-K caIc-alkaline series, with minor aspects of shoshonite series. Their SiO2 and A1203 contents range from 61.37% to 66.59% and 15.35% to 17.06%, respectively. The MgO content ranges from 2.02 % to 3.47 %, with Mg# indices of 44-59. The (La/Yb)N and Eu/Eu* values range from 16.85 to 81.73 and 0.68 to 0.93, respectively, showing strong differentiation rare earth element (REE) patterns similar to those of adakites. The rocks are enriched in Ba, Sr and light REE (LREE), obviously depleted in Nb and Ta, slightly depleted in Rb and Ti, and poor in Yb and Y, with Yb and Y contents of 0.31-1.32 ppm and 4.32-12.07 ppm, respectively. As indicated by Sr/Y ratios of 67.74-220.60, the rocks are characterized by low-Y and high-Sr contents, which characterize the adakites in the world. Holistically, geochemical tracers suggest that the interested intrusions are adakitic rocks. Given that the Paleo- Asian Ocean and Mongol-Okhotsk Ocean were closed in the Late Paleozoic and Permian-Middle Jurassic, respectively, the interested intrusions should be formed by partial melting of delaminated crust, which had been thickened during collisional orogeny between the Siberian and Mongolian- Sinokorean continents.展开更多
The LA-ICPMS zircon U-Pb geochronology of three typically Indosinian granitic plutons yielded weighted mean ^206pb/^238U ages of 214.1±5.9 Ma and 210.3±4.7 Ma for the biotite monzonitic granites from the Xie...The LA-ICPMS zircon U-Pb geochronology of three typically Indosinian granitic plutons yielded weighted mean ^206pb/^238U ages of 214.1±5.9 Ma and 210.3±4.7 Ma for the biotite monzonitic granites from the Xiema and Xiangzikou plutons in Hunan Province, and 205.3±1.6 Ma for biotite granite from the Napeng pluton, western Guandong Province, respectively, showing a similar late Indosinian age of crystallization. In combination with other geochronological data from Indosinian granites within the South China Block (SCB), it is proposed that those late Indosinian granites with an age of -210 Ma and the early Indosinian granites (230-245 Ma) have the similar petrogenesis in identical tectonic setting. The Indosinian granites within the SCB might be the products of anatexis of the thickening crust in a compressive regime. These data provide a further understanding for the temporal and spatial distribution of the Indosinian granites and the dynamic evolution of the SCB.展开更多
Cu–Au mineralization is rare in the Jurassic–Early Tertiary batholiths related to the India–Asia collision. Geochemical analysis and U–Pb isotope chronology was carried out on Shuangbujiere biotite hornblende gran...Cu–Au mineralization is rare in the Jurassic–Early Tertiary batholiths related to the India–Asia collision. Geochemical analysis and U–Pb isotope chronology was carried out on Shuangbujiere biotite hornblende granodiorite from the Zedong area. Zircon grains of the biotite hornblende granodiorite show oscillatory growth zonation and have high Th/U ratios of 1.08–2.39, indicating a magmatic origin for the zircons. Geochrological test yielded a LA-ICP-MS U-Pb age of 51.5±1.0 Ma, suggesting that the emplacement age of the biotite hornblende granodiorite is Early Eocene. The Shuangbujiere biotite hornblende granodiorites have geochemical features characteristic of adakite and are associated with a calc–alkaline metaluminous I-type granite enriched in Sr, high in Mg~#(49.6–54.9) and Sr/Y, and depleted in Y and Yb. These results indicate that this intrusion formation may have been associated with crustal thickening caused by the early collision of the Indian and Eurasian Plates. As the process of crustal thickening continued, the heating of the underplated basaltic magma caused the thickened lower crust amphibolite to dehydrate the melt and form a high-K calc–alkaline adakitic melt at about 848°C. Meanwhile, magma mixing of the underplated basaltic melt and high-K calc–alkaline adakitic melt formed a high-Mg# adakite representative of the sys-collisional tectonic setting.展开更多
The petrogenesis and geodynamic setting of the Late Jurassic Baita porphyry quartz monzodiorite in Xingcheng-Liaoxi area provide information for understanding the Mesozoic tectonic evolution of the northeastern North ...The petrogenesis and geodynamic setting of the Late Jurassic Baita porphyry quartz monzodiorite in Xingcheng-Liaoxi area provide information for understanding the Mesozoic tectonic evolution of the northeastern North China Craton.In this paper,geochronological,whole-rock geochemical,and in-situ zircon Hf isotopic analyses of Baita porphyry quartz monzodiorite were investigated to constrain the crystallization age and petrogenesis.Zircons exhibit typical oscillatory zoning in cathodoluminescence images and show relatively high Th/U ratios(0.78-1.62),and U-Pb analyses indicate that these rocks were crystallized during the Late Jurassic(159±1 Ma).Geochemically,they are characterized by high contents of SiO 2(65.21wt%-65.31wt%),Al 2O 3(16.29wt%-16.31wt%),Sr(521×10^(-6)-539×10^(-6)),and Sr/Y ratio(45.1-47.8)but low Y(10.9×10^(-6)-12.0×10^(-6)),with obvious adakitic geochemical affinities.These above-mentioned findings,combined with their negativeε_(Hf)(t)values(-21.7 to-20.2),corresponding two-stage model age(T_( DM2))of 2579-2484 Ma,as well as low MgO(1.38wt%-1.39wt%),Cr(18.5×10^(-6)-19.5×10^(-6))and Ni(9.45×10^(-6)-9.46×10^(-6))values,indicate that Baita porphyry quartz monzodiorite may be generated by partial melting of the Neoarchean-Paleoproterozoic thickened basaltic lower crust.Based on the results from this study and pre-vious regional studies,it is concluded that Baita porphyry quartz monzodiorite was spatially related to the westward subduction of the Paleo-Pacific plate.展开更多
Zircon LA-ICP-MS U-Pb geochronology and geochemical analyses are undertaken for the garnet-bear-ing muscovite monzogranite in Yitong area, central Jilin Province. The formation age and petrogenesis of the granite are ...Zircon LA-ICP-MS U-Pb geochronology and geochemical analyses are undertaken for the garnet-bear-ing muscovite monzogranite in Yitong area, central Jilin Province. The formation age and petrogenesis of the granite are determined, and the regional tectonic background is discussed. Zircons from the granite are euhe-dral-subhedral in shape, and display fine-scale oscillatory growth zoning, indicating a magmatie origin. LA- ICP-MS zircon U-Pb dating result indicates that the garnet-bearing muscovite monzogranites formed in the mid-dle Triassic (243 Ma ). The garnet-bearing muscovite monzogranites have high SiO2 (SiO2 = 74.1%- 76.49% ), rich aluminum (A1203 = 14.47%-14.68% ) and alkali ( NazO + K20 = 4.31%-7.9% ), low Fe203T and MgO (MgO =0.1%-0. 13% , Fe203T =0.46%-1.02% ). The ratio of CaO/Na20 is between 0.17--0. 21. The garnet-bearing muscovite monzogranites in Yitong region are relatively enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs) , and depleted of heavy rare earth elements (HREEs) and high field strength elements (HFSEs). They are characterized by high Sr and Ba, poor Rb and Y, and negative Eu abnormally (δEu =0.48-0.62) , with Rb/Sr 〈 1. The εHf(t) values and TDM2 of zircons range from + 6. 10 to + 8.00 and from 725 Ma to 814 Ma, respectively. The above features indicate that gar- net-bearing muscovite monzogranites in Yitong area were derived from partial melting of metasedimentary rock. These granites have high Sr/Y ratios, which suggest they formed in a thickened continental crust. Combined with the coeval granitic rocks in central Jilin Province, we suggested that a significant eollisional and thickening event took place during the Middle Triassic.展开更多
基金supported by the Major State Basic Research Program of People's Republic of China (Grant Nos.2006CB403508 and 2007CB411303)the National Natural Science Foundation of China(Nos. 40772055 and 40425006)+1 种基金National Key Technology R&D Program(No.2007BAB25B03)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘The Longgouhe and Ershiyizhan intrusions of the Late Jurassic, located in the Upper Heilongjiang Basin of the northern Great Hinggan Range, are closely related to porphyry Cu-Au mineralizations. In lithology the intrusions are quartz diorite, quartz monzodiorite and granodiorite of high-K caIc-alkaline series, with minor aspects of shoshonite series. Their SiO2 and A1203 contents range from 61.37% to 66.59% and 15.35% to 17.06%, respectively. The MgO content ranges from 2.02 % to 3.47 %, with Mg# indices of 44-59. The (La/Yb)N and Eu/Eu* values range from 16.85 to 81.73 and 0.68 to 0.93, respectively, showing strong differentiation rare earth element (REE) patterns similar to those of adakites. The rocks are enriched in Ba, Sr and light REE (LREE), obviously depleted in Nb and Ta, slightly depleted in Rb and Ti, and poor in Yb and Y, with Yb and Y contents of 0.31-1.32 ppm and 4.32-12.07 ppm, respectively. As indicated by Sr/Y ratios of 67.74-220.60, the rocks are characterized by low-Y and high-Sr contents, which characterize the adakites in the world. Holistically, geochemical tracers suggest that the interested intrusions are adakitic rocks. Given that the Paleo- Asian Ocean and Mongol-Okhotsk Ocean were closed in the Late Paleozoic and Permian-Middle Jurassic, respectively, the interested intrusions should be formed by partial melting of delaminated crust, which had been thickened during collisional orogeny between the Siberian and Mongolian- Sinokorean continents.
基金This study was financially supported by the National Natural Science Foundation of China(grants 40421303 and 40234046).
文摘The LA-ICPMS zircon U-Pb geochronology of three typically Indosinian granitic plutons yielded weighted mean ^206pb/^238U ages of 214.1±5.9 Ma and 210.3±4.7 Ma for the biotite monzonitic granites from the Xiema and Xiangzikou plutons in Hunan Province, and 205.3±1.6 Ma for biotite granite from the Napeng pluton, western Guandong Province, respectively, showing a similar late Indosinian age of crystallization. In combination with other geochronological data from Indosinian granites within the South China Block (SCB), it is proposed that those late Indosinian granites with an age of -210 Ma and the early Indosinian granites (230-245 Ma) have the similar petrogenesis in identical tectonic setting. The Indosinian granites within the SCB might be the products of anatexis of the thickening crust in a compressive regime. These data provide a further understanding for the temporal and spatial distribution of the Indosinian granites and the dynamic evolution of the SCB.
基金financially supported by China Geological Survey(grant no.12120113095700,12120101000015001108)the National Science Foundation of China(grant no.41403039)the training program for young and middle aged backbone teachers of Chengdu Universcechnology(grant no.KYGG201502)
文摘Cu–Au mineralization is rare in the Jurassic–Early Tertiary batholiths related to the India–Asia collision. Geochemical analysis and U–Pb isotope chronology was carried out on Shuangbujiere biotite hornblende granodiorite from the Zedong area. Zircon grains of the biotite hornblende granodiorite show oscillatory growth zonation and have high Th/U ratios of 1.08–2.39, indicating a magmatic origin for the zircons. Geochrological test yielded a LA-ICP-MS U-Pb age of 51.5±1.0 Ma, suggesting that the emplacement age of the biotite hornblende granodiorite is Early Eocene. The Shuangbujiere biotite hornblende granodiorites have geochemical features characteristic of adakite and are associated with a calc–alkaline metaluminous I-type granite enriched in Sr, high in Mg~#(49.6–54.9) and Sr/Y, and depleted in Y and Yb. These results indicate that this intrusion formation may have been associated with crustal thickening caused by the early collision of the Indian and Eurasian Plates. As the process of crustal thickening continued, the heating of the underplated basaltic magma caused the thickened lower crust amphibolite to dehydrate the melt and form a high-K calc–alkaline adakitic melt at about 848°C. Meanwhile, magma mixing of the underplated basaltic melt and high-K calc–alkaline adakitic melt formed a high-Mg# adakite representative of the sys-collisional tectonic setting.
基金Supported by National Natural Science foundations of China(Nos.42072063,41722204).
文摘The petrogenesis and geodynamic setting of the Late Jurassic Baita porphyry quartz monzodiorite in Xingcheng-Liaoxi area provide information for understanding the Mesozoic tectonic evolution of the northeastern North China Craton.In this paper,geochronological,whole-rock geochemical,and in-situ zircon Hf isotopic analyses of Baita porphyry quartz monzodiorite were investigated to constrain the crystallization age and petrogenesis.Zircons exhibit typical oscillatory zoning in cathodoluminescence images and show relatively high Th/U ratios(0.78-1.62),and U-Pb analyses indicate that these rocks were crystallized during the Late Jurassic(159±1 Ma).Geochemically,they are characterized by high contents of SiO 2(65.21wt%-65.31wt%),Al 2O 3(16.29wt%-16.31wt%),Sr(521×10^(-6)-539×10^(-6)),and Sr/Y ratio(45.1-47.8)but low Y(10.9×10^(-6)-12.0×10^(-6)),with obvious adakitic geochemical affinities.These above-mentioned findings,combined with their negativeε_(Hf)(t)values(-21.7 to-20.2),corresponding two-stage model age(T_( DM2))of 2579-2484 Ma,as well as low MgO(1.38wt%-1.39wt%),Cr(18.5×10^(-6)-19.5×10^(-6))and Ni(9.45×10^(-6)-9.46×10^(-6))values,indicate that Baita porphyry quartz monzodiorite may be generated by partial melting of the Neoarchean-Paleoproterozoic thickened basaltic lower crust.Based on the results from this study and pre-vious regional studies,it is concluded that Baita porphyry quartz monzodiorite was spatially related to the westward subduction of the Paleo-Pacific plate.
基金Supported by National Basic Research Program of China(No.41572043)
文摘Zircon LA-ICP-MS U-Pb geochronology and geochemical analyses are undertaken for the garnet-bear-ing muscovite monzogranite in Yitong area, central Jilin Province. The formation age and petrogenesis of the granite are determined, and the regional tectonic background is discussed. Zircons from the granite are euhe-dral-subhedral in shape, and display fine-scale oscillatory growth zoning, indicating a magmatie origin. LA- ICP-MS zircon U-Pb dating result indicates that the garnet-bearing muscovite monzogranites formed in the mid-dle Triassic (243 Ma ). The garnet-bearing muscovite monzogranites have high SiO2 (SiO2 = 74.1%- 76.49% ), rich aluminum (A1203 = 14.47%-14.68% ) and alkali ( NazO + K20 = 4.31%-7.9% ), low Fe203T and MgO (MgO =0.1%-0. 13% , Fe203T =0.46%-1.02% ). The ratio of CaO/Na20 is between 0.17--0. 21. The garnet-bearing muscovite monzogranites in Yitong region are relatively enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs) , and depleted of heavy rare earth elements (HREEs) and high field strength elements (HFSEs). They are characterized by high Sr and Ba, poor Rb and Y, and negative Eu abnormally (δEu =0.48-0.62) , with Rb/Sr 〈 1. The εHf(t) values and TDM2 of zircons range from + 6. 10 to + 8.00 and from 725 Ma to 814 Ma, respectively. The above features indicate that gar- net-bearing muscovite monzogranites in Yitong area were derived from partial melting of metasedimentary rock. These granites have high Sr/Y ratios, which suggest they formed in a thickened continental crust. Combined with the coeval granitic rocks in central Jilin Province, we suggested that a significant eollisional and thickening event took place during the Middle Triassic.