Functional traits of trees are significantly associated with their adaptation strategies and productivity.However,the effects of species composition and mixing proportion on the functional traits of trees grown in mix...Functional traits of trees are significantly associated with their adaptation strategies and productivity.However,the effects of species composition and mixing proportion on the functional traits of trees grown in mixed plantations have not been studied extensively.In this study,planting experiments(duration about seven months)were used to study variations in functional traits and biomass allocation of C unninghamia lanceolata(Lamb.)Hook and Phoebe bournei(Hemsley)Yang seedlings in five different mixes(0C:4P,1C:3P,1C:1P,3C:1P,and 4C:0P).Total leaf area per seedling increased in each species as its respective proportion in the mixture decreased.However,the specific leaf area decreased for P.bournei under low percent composition,and the specific leaf area for C.lanceolata differed only marginally among the plantings.The net photosynthetic rates of the two species were higher in the mixed plantings than in their corresponding monocultures,whereas the transpiration rate,stomatal conductance,and instantaneous water use efficiency were not different among the plantings.The average root length and root surface area of C.lanceolata and P.bournei were higher in the mixed plantings than in their monocultures.Specifically,root surface area of C.lanceolate and both root length and surface area of P.bournei increased significantly in the 1C:3P and 2C:2P mixed plantings.Leaf,stem,root,and total dry mass per seedling for C.lanceolata decreased with its increasing percent composition in the mixed plantings,while these variables varied less for P.bournei.The plasticity of biomass allocation was relatively low for both species.Total biomass per planting was higher in the mixed plantings than in the monocultures.Our study indicates that species composition and mixing proportion can considerably affect the functional traits of C.lanceolata and P.bournei.The increase in productivity in the mixed plantings may be partially attributed to low rates of competition between the two species,and future studies should examine the different interspecies relationships.The results of this study can be used to improve plantation productivity and ultimately increase the sustainability of tree products and help to better understand the adaptation strategies of plant coexistence.展开更多
Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to pre...Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to prevent underestimate of the standard errors of the parameter estimators but do not include random effects. In this study, we developed a mixed-effect parametric proportional hazard (MEPPH) model with a generalized log-logistic distribution baseline. The parameters of the model were estimated by the application of the maximum likelihood estimation technique with an iterative optimization procedure (quasi-Newton Raphson). The developed MEPPH model’s performance was evaluated using Monte Carlo simulation. The Leukemia dataset with right-censored data was used to demonstrate the model’s applicability. The results revealed that all covariates, except age in PH models, were significant in all considered distributions. Age and Townsend score were significant when the GLL distribution was used in MEPPH, while sex, age and Townsend score were significant in MEPPH model when other distributions were used. Based on information criteria values, the Generalized Log-Logistic Mixed-Effects Parametric Proportional Hazard model (GLL-MEPPH) outperformed other models.展开更多
This study examined the relationship between selected physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from combination of maize cob particles and sawdust of low, medium ...This study examined the relationship between selected physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from combination of maize cob particles and sawdust of low, medium and high density timber species. Particle sizes of maize cobs and sawdust used for the study were ≤1 mm. The two materials were combined at mixing percentages of 90:10, 70:30 and 50:50 (Sawdust:maize cobs). Briquettes were produced at room temperature (28°C) using compacting pressures 20, 30, 40 and 50 MPa. The results suggested that combining maize cob particles with sawdust of low, medium and high density wood species could significantly enhance the relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from agricultural biomass residue like maize cobs. The results further indicated that the physical and mechanical characteristics of briquettes produced from combinations of sawdust of low density species and maize cobs were exceptionally higher than that produced from combinations of maize cob particles, and medium density and high density timber species. The R2 values for the regression model between the independent variables (mixing percentage and compacting pressure) and relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from combinations of maize cob particles and sawdust of low density species (Ceiba pentandra) were 0.966, 0.932 and 0.710 respectively. This study provides a hope for briquetting maize cobs at room temperature using a low compacting pressure.展开更多
Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix propo...Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use.展开更多
[Objective] This study aimed to examine the effect of different proportions of Wolffia on the growth of Procambarus clarkia in 2 kinds of community scales. [Method] Six proportions of baits mixed by watermeal and comm...[Objective] This study aimed to examine the effect of different proportions of Wolffia on the growth of Procambarus clarkia in 2 kinds of community scales. [Method] Six proportions of baits mixed by watermeal and commercial feed (0, 20%, 40%, 60%, 80%, and 100%) were designed to feed the Procambarus clarkia juveniles in 2 community scales to research the growth situation of the crayfish in different mixed baits. The growth differences between the minimal community and the larger community of crayfish in the same proportion of Wolffia were compared. [Result] The growth situations of crayfish in the 2 community scales at different proportions of watermeal were as follows: the body length was the longest in 60% watermeal group, and shortest in the pure watermeal group; the regularity was the best in the 20% watermeal group; no matter the minimal community or the larger community, there was no significant difference in the survival rate between different watermeal proportions. The growth situations of crayfish in the 2 community scales at specific proportion of watermeal were: the average body length of the minimal community was significantly greater than the larger community, and the survival rate also greater than the latter one, but the difference was not significant. [Conclusion] Considering all kinds of index such as growth, survival rate, regularity, the appropriate proportion of the baits mixed by watermeal and commercial feed is 40% to 60%; big community scale has significant inhibition on growth of crayfish, thus, there should be barriers when cultivating Procambarus clarkia juvenile.展开更多
Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan a...Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan area has shoshonitic affinity and I-type character, and is composed of syenogranites containing abundant mafic microgranular enclaves(MMEs). LA-MC-ICP-MS U-Pb data yield weighted mean 206 Pb/238 U ages of 222 ± 1 Ma and 221 ± 1 Ma for the syenogranites and MMEs, respectively, suggesting their coeval formation during the Late Triassic. The syenogranites have high SiO_2(70.42-72.30 wt%),K_2O(4.58-5.22 wt.%) and Na_2O(4.19-4.43 wt.%) contents but lower concentrations of P_2O_5(0.073-0.096 wt.%) and TiO_2(0.27-0.37 wt.%), and are categorized as I-type granites, rather than A-type granites, as previously thought. These syenogranites exhibit lower(^(87)Sr/^(86)Sr)i ratios(0.70532-0.70547) and strongly negative whole-rock εNd(t) values(-12.54 to-11.86) and zircon εHf(t) values(-17.81 to-10.77),as well as old Nd(1962-2017 Ma) and Hf(2023-2092 Ma) model ages, indicating that they were derived from the lower crust.Field and petrological observations reveal that the MMEs within the pluton probably represent magmatic globules commingled with their host magmas. Geochemically, these MMEs have low SiO_2(53.46-55.91 wt.%)but high FeOt(7.27-8.79 wt.%) contents. They are enriched in light rare earth elements(LREEs) and large ion lithophile elements(LILEs), and are depleted in heavy rare earth elements(HREEs) and high field strength elements(HFSEs). They have whole-rock(^(87)Sr/^(86)Sr)i ratios varying from 0.70551 to 0.70564, εNd(t) values of -10.63 to -9.82, and zircon εHf(t) values of -9.89 to 0.19. Their geochemical and isotopic features indicate that they were derived from the subcontinental lithospheric mantle mainly metasomatized by slab-derived fluids, with minor involvement of melts generated from the ascending asthenospheric mantle. Petrology integrated with elemental and isotopic geochemistry suggest that the Shadegai pluton was produced by crust-mantle interactions, i.e., partial melting of the lower continental crust induced by underplating of mantle-derived mafic magmas(including the subcontinental lithospheric mantle and asthenospheric mantle), and subsequent mixing of the mantle-and crust-derived magmas. In combination with existing geological data, it is inferred that the Shadegai pluton formed in a post-collisional extensional regime related to lithospheric delamination following the collision between the NCC and Mongolia arc terranes.展开更多
The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and...The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and may cause safety problem.A successful case of hydrocarbon dew point(HCDP)analysis is demonstrated during the mixing of natural gases in the transmission pipeline.Methods used to predict the HCDP are combined with equations of state(EOS)and characterization of C6+heavy components.Predictions are compared with measured HCDP with different concentrations of mixed gases at a wide range of pressure and temperature scopes.Software named"PipeGasAnalysis"is developed and helps to systematic analyze the condensation problem,which will provide the guidance for the design and operation of the network.展开更多
The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Prop...The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Proportional(model I)overloading may cause more serious crack growth retardation than non-proportional(mixed mode)overloading.Therefore,for estimating the fatigue life of engineering structures to simplify a real overload which may of- ten be non-proportional as a proportional one is not always safe.展开更多
基金supported by the Project of Public Welfare Technology Research in Zhejiang Province(LGN21C160010)the National Key Research and Development Program of China(No.2017YF C0505502)。
文摘Functional traits of trees are significantly associated with their adaptation strategies and productivity.However,the effects of species composition and mixing proportion on the functional traits of trees grown in mixed plantations have not been studied extensively.In this study,planting experiments(duration about seven months)were used to study variations in functional traits and biomass allocation of C unninghamia lanceolata(Lamb.)Hook and Phoebe bournei(Hemsley)Yang seedlings in five different mixes(0C:4P,1C:3P,1C:1P,3C:1P,and 4C:0P).Total leaf area per seedling increased in each species as its respective proportion in the mixture decreased.However,the specific leaf area decreased for P.bournei under low percent composition,and the specific leaf area for C.lanceolata differed only marginally among the plantings.The net photosynthetic rates of the two species were higher in the mixed plantings than in their corresponding monocultures,whereas the transpiration rate,stomatal conductance,and instantaneous water use efficiency were not different among the plantings.The average root length and root surface area of C.lanceolata and P.bournei were higher in the mixed plantings than in their monocultures.Specifically,root surface area of C.lanceolate and both root length and surface area of P.bournei increased significantly in the 1C:3P and 2C:2P mixed plantings.Leaf,stem,root,and total dry mass per seedling for C.lanceolata decreased with its increasing percent composition in the mixed plantings,while these variables varied less for P.bournei.The plasticity of biomass allocation was relatively low for both species.Total biomass per planting was higher in the mixed plantings than in the monocultures.Our study indicates that species composition and mixing proportion can considerably affect the functional traits of C.lanceolata and P.bournei.The increase in productivity in the mixed plantings may be partially attributed to low rates of competition between the two species,and future studies should examine the different interspecies relationships.The results of this study can be used to improve plantation productivity and ultimately increase the sustainability of tree products and help to better understand the adaptation strategies of plant coexistence.
文摘Clustered survival data are widely observed in a variety of setting. Most survival models incorporate clustering and grouping of data accounting for between-cluster variability that creates correlation in order to prevent underestimate of the standard errors of the parameter estimators but do not include random effects. In this study, we developed a mixed-effect parametric proportional hazard (MEPPH) model with a generalized log-logistic distribution baseline. The parameters of the model were estimated by the application of the maximum likelihood estimation technique with an iterative optimization procedure (quasi-Newton Raphson). The developed MEPPH model’s performance was evaluated using Monte Carlo simulation. The Leukemia dataset with right-censored data was used to demonstrate the model’s applicability. The results revealed that all covariates, except age in PH models, were significant in all considered distributions. Age and Townsend score were significant when the GLL distribution was used in MEPPH, while sex, age and Townsend score were significant in MEPPH model when other distributions were used. Based on information criteria values, the Generalized Log-Logistic Mixed-Effects Parametric Proportional Hazard model (GLL-MEPPH) outperformed other models.
文摘This study examined the relationship between selected physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from combination of maize cob particles and sawdust of low, medium and high density timber species. Particle sizes of maize cobs and sawdust used for the study were ≤1 mm. The two materials were combined at mixing percentages of 90:10, 70:30 and 50:50 (Sawdust:maize cobs). Briquettes were produced at room temperature (28°C) using compacting pressures 20, 30, 40 and 50 MPa. The results suggested that combining maize cob particles with sawdust of low, medium and high density wood species could significantly enhance the relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from agricultural biomass residue like maize cobs. The results further indicated that the physical and mechanical characteristics of briquettes produced from combinations of sawdust of low density species and maize cobs were exceptionally higher than that produced from combinations of maize cob particles, and medium density and high density timber species. The R2 values for the regression model between the independent variables (mixing percentage and compacting pressure) and relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from combinations of maize cob particles and sawdust of low density species (Ceiba pentandra) were 0.966, 0.932 and 0.710 respectively. This study provides a hope for briquetting maize cobs at room temperature using a low compacting pressure.
基金Funded by the National Natural Science Foundation of China(No.51278073)Prospective Joint Research Project of Jiangsu Province(No.BY2015027-23)State Key Laboratory for Geo Mechanics and Deep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1704)
文摘Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use.
文摘[Objective] This study aimed to examine the effect of different proportions of Wolffia on the growth of Procambarus clarkia in 2 kinds of community scales. [Method] Six proportions of baits mixed by watermeal and commercial feed (0, 20%, 40%, 60%, 80%, and 100%) were designed to feed the Procambarus clarkia juveniles in 2 community scales to research the growth situation of the crayfish in different mixed baits. The growth differences between the minimal community and the larger community of crayfish in the same proportion of Wolffia were compared. [Result] The growth situations of crayfish in the 2 community scales at different proportions of watermeal were as follows: the body length was the longest in 60% watermeal group, and shortest in the pure watermeal group; the regularity was the best in the 20% watermeal group; no matter the minimal community or the larger community, there was no significant difference in the survival rate between different watermeal proportions. The growth situations of crayfish in the 2 community scales at specific proportion of watermeal were: the average body length of the minimal community was significantly greater than the larger community, and the survival rate also greater than the latter one, but the difference was not significant. [Conclusion] Considering all kinds of index such as growth, survival rate, regularity, the appropriate proportion of the baits mixed by watermeal and commercial feed is 40% to 60%; big community scale has significant inhibition on growth of crayfish, thus, there should be barriers when cultivating Procambarus clarkia juvenile.
基金supported by the Land and Resources Survey Project of China (Grant Nos. 1212011120725 and 12120113072200)
文摘Latest Permian to Triassic plutons are widespread in the northern North China Craton(NCC); most of them show calc-alkaline, high-K calc-alkaline, or alkaline geochemical features. The Shadegai pluton in the Wulashan area has shoshonitic affinity and I-type character, and is composed of syenogranites containing abundant mafic microgranular enclaves(MMEs). LA-MC-ICP-MS U-Pb data yield weighted mean 206 Pb/238 U ages of 222 ± 1 Ma and 221 ± 1 Ma for the syenogranites and MMEs, respectively, suggesting their coeval formation during the Late Triassic. The syenogranites have high SiO_2(70.42-72.30 wt%),K_2O(4.58-5.22 wt.%) and Na_2O(4.19-4.43 wt.%) contents but lower concentrations of P_2O_5(0.073-0.096 wt.%) and TiO_2(0.27-0.37 wt.%), and are categorized as I-type granites, rather than A-type granites, as previously thought. These syenogranites exhibit lower(^(87)Sr/^(86)Sr)i ratios(0.70532-0.70547) and strongly negative whole-rock εNd(t) values(-12.54 to-11.86) and zircon εHf(t) values(-17.81 to-10.77),as well as old Nd(1962-2017 Ma) and Hf(2023-2092 Ma) model ages, indicating that they were derived from the lower crust.Field and petrological observations reveal that the MMEs within the pluton probably represent magmatic globules commingled with their host magmas. Geochemically, these MMEs have low SiO_2(53.46-55.91 wt.%)but high FeOt(7.27-8.79 wt.%) contents. They are enriched in light rare earth elements(LREEs) and large ion lithophile elements(LILEs), and are depleted in heavy rare earth elements(HREEs) and high field strength elements(HFSEs). They have whole-rock(^(87)Sr/^(86)Sr)i ratios varying from 0.70551 to 0.70564, εNd(t) values of -10.63 to -9.82, and zircon εHf(t) values of -9.89 to 0.19. Their geochemical and isotopic features indicate that they were derived from the subcontinental lithospheric mantle mainly metasomatized by slab-derived fluids, with minor involvement of melts generated from the ascending asthenospheric mantle. Petrology integrated with elemental and isotopic geochemistry suggest that the Shadegai pluton was produced by crust-mantle interactions, i.e., partial melting of the lower continental crust induced by underplating of mantle-derived mafic magmas(including the subcontinental lithospheric mantle and asthenospheric mantle), and subsequent mixing of the mantle-and crust-derived magmas. In combination with existing geological data, it is inferred that the Shadegai pluton formed in a post-collisional extensional regime related to lithospheric delamination following the collision between the NCC and Mongolia arc terranes.
基金Project(2011ZX05026-004-03)supported by the Key National Science and Technology Specific Program,ChinaProject(NCET-12-0969)supported by the Program for New Century Excellent Talents in University,China+1 种基金Project(51104167)supported by the National Natural Science Foundation of ChinaProject(BJ-2011-02)supported by the Research Funds of China University of Petroleum-Beijing
文摘The occurrence of liquid condensation in natural gas accounts for new challenges during the interoperability between transmission networks,where condensation would lead to higher pressure drops,lower line capacity and may cause safety problem.A successful case of hydrocarbon dew point(HCDP)analysis is demonstrated during the mixing of natural gases in the transmission pipeline.Methods used to predict the HCDP are combined with equations of state(EOS)and characterization of C6+heavy components.Predictions are compared with measured HCDP with different concentrations of mixed gases at a wide range of pressure and temperature scopes.Software named"PipeGasAnalysis"is developed and helps to systematic analyze the condensation problem,which will provide the guidance for the design and operation of the network.
文摘The effect of proportional and non-proportional overloading on mode l fatigue crack growth have been studied,and the influences of crack tip plastic zone,crack tip blunting as well as crack closure were discussed.Proportional(model I)overloading may cause more serious crack growth retardation than non-proportional(mixed mode)overloading.Therefore,for estimating the fatigue life of engineering structures to simplify a real overload which may of- ten be non-proportional as a proportional one is not always safe.