We have estimated the DBML(depth to the bottom of the magnetic layer) in South America from the inversion of magnetic anomaly data extracted from the EMAG2 grid. The results show that the DBML values, interpreted as...We have estimated the DBML(depth to the bottom of the magnetic layer) in South America from the inversion of magnetic anomaly data extracted from the EMAG2 grid. The results show that the DBML values, interpreted as the Curie isotherm, vary between -10 and -60 km. The deepest values(〉-45) are mainly observed forming two anomalous zones in the central part of the Andes Cordillera. To the east of the Andes, in most of the stable cratonic area of South America, intermediate values(between -25 and-45 km) are predominant. The shallowest values(〈-25 km) are present in northwestern corner of South America, southern Patagonia, and in a few sectors to the east of the Andes Cordillera. Based on these results, we estimated the heat flow variations along the study area and found a very good correlation with the DBML. Also striking is the observation that the thermal anomalies of low heat flow are closely related to segments of flat subduction, where the presence of a cold and thick subducting oceanic slab beneath the continent, with a virtual absence of hot mantle wedge, leads to a decrease in the heat transfer from the deeper parts of the system.After comparing our results with the Moho depths reported by other authors, we have found that the Curie isotherm is deeper than Moho in most of the South American Platform(northward to -20°S), which is located in the stable cratonic area at the east of the Andes. This is evidence that the lithospheric mantle here is magnetic and contributes to the long wavelength magnetic signal. Also, our results support the hypothesis that the Curie isotherm may be acting as a boundary above which most of the crustal seismicity is concentrated. Below this boundary the occurrence of seismic events decreases dramatically.展开更多
We examine the crustal magnetization of Terra Meridiani and Terra Sirenum, the region representing the strongest magnetization in the Southern Hemisphere, by downward continuing mapping level data (400 km altitude) fr...We examine the crustal magnetization of Terra Meridiani and Terra Sirenum, the region representing the strongest magnetization in the Southern Hemisphere, by downward continuing mapping level data (400 km altitude) from the Mars Global Surveyor (MGS) Magnetometer and Electron Reflectometer (MAG/ER). We find that the surface magnetization in both regions can be fit with a small number of sources, with the positive sources stronger than negative ones in both regions. The ratio of the strongest positive to strongest negative source for the regions matches within 2%. For both regions, the locations of strong sources are positioned at the outer rings of ancient impact features. We employ two approaches of source depth estimation. One method employs downward continuation of positive and negative sources from mapping level into the subsurface to extrapolate the depth to magnetization. With this approach, source depths generally range from 80 ±20 km in Terra Meridiani and 65 ±25 km in Terra Sirenum. A graphical approach uses the contour map of surface magnetization to estimate depths ranging from 125 km for thick sources in Terra Meridiani and from 82 km for thick sources in Terra Sirenum. These depths require a low (≤∼20 mW/m2) Martian heat flux to permit magnetite, hematite, and/or pyrrhotite (although limited) as carriers through 100 km or more. The upcoming InSight mission will provide invaluable seismic constraints on both crustal and core structure, in addition to the first Martian heat flow measurements that will constrain magnetization.展开更多
文摘We have estimated the DBML(depth to the bottom of the magnetic layer) in South America from the inversion of magnetic anomaly data extracted from the EMAG2 grid. The results show that the DBML values, interpreted as the Curie isotherm, vary between -10 and -60 km. The deepest values(〉-45) are mainly observed forming two anomalous zones in the central part of the Andes Cordillera. To the east of the Andes, in most of the stable cratonic area of South America, intermediate values(between -25 and-45 km) are predominant. The shallowest values(〈-25 km) are present in northwestern corner of South America, southern Patagonia, and in a few sectors to the east of the Andes Cordillera. Based on these results, we estimated the heat flow variations along the study area and found a very good correlation with the DBML. Also striking is the observation that the thermal anomalies of low heat flow are closely related to segments of flat subduction, where the presence of a cold and thick subducting oceanic slab beneath the continent, with a virtual absence of hot mantle wedge, leads to a decrease in the heat transfer from the deeper parts of the system.After comparing our results with the Moho depths reported by other authors, we have found that the Curie isotherm is deeper than Moho in most of the South American Platform(northward to -20°S), which is located in the stable cratonic area at the east of the Andes. This is evidence that the lithospheric mantle here is magnetic and contributes to the long wavelength magnetic signal. Also, our results support the hypothesis that the Curie isotherm may be acting as a boundary above which most of the crustal seismicity is concentrated. Below this boundary the occurrence of seismic events decreases dramatically.
文摘We examine the crustal magnetization of Terra Meridiani and Terra Sirenum, the region representing the strongest magnetization in the Southern Hemisphere, by downward continuing mapping level data (400 km altitude) from the Mars Global Surveyor (MGS) Magnetometer and Electron Reflectometer (MAG/ER). We find that the surface magnetization in both regions can be fit with a small number of sources, with the positive sources stronger than negative ones in both regions. The ratio of the strongest positive to strongest negative source for the regions matches within 2%. For both regions, the locations of strong sources are positioned at the outer rings of ancient impact features. We employ two approaches of source depth estimation. One method employs downward continuation of positive and negative sources from mapping level into the subsurface to extrapolate the depth to magnetization. With this approach, source depths generally range from 80 ±20 km in Terra Meridiani and 65 ±25 km in Terra Sirenum. A graphical approach uses the contour map of surface magnetization to estimate depths ranging from 125 km for thick sources in Terra Meridiani and from 82 km for thick sources in Terra Sirenum. These depths require a low (≤∼20 mW/m2) Martian heat flux to permit magnetite, hematite, and/or pyrrhotite (although limited) as carriers through 100 km or more. The upcoming InSight mission will provide invaluable seismic constraints on both crustal and core structure, in addition to the first Martian heat flow measurements that will constrain magnetization.