期刊文献+
共找到2,380篇文章
< 1 2 119 >
每页显示 20 50 100
Structural similarity of lithospheric velocity models of Chinese mainland
1
作者 Feng Huang Xueyang Bao +1 位作者 Qili Andy Dai Xinfu Li 《Earthquake Science》 2024年第6期514-528,共15页
Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi... Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models. 展开更多
关键词 structural similarity LITHOSPHERE TOMOGRAPHY velocity model Chinese mainland
下载PDF
Velocity structure in the South Yellow Sea basin based on first-arrival tomography of wide-angle seismic data and its geological implications 被引量:2
2
作者 Weina Zhao Zhiqiang Wu +6 位作者 Fanghui Hou Xunhua Zhang Tianyao Hao Hanjoon Kim Yanpeng Zheng Shanshan Chen Huigang Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第2期104-119,共16页
The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity ... The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments.Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail,leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments.In this study,we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin.The results indicate that strong velocity variations occur at shallow crustal levels.Horizontal velocity bodies show good correlation with surface geological features,and multi-layer features exist in the vertical velocity framework(depth:0–10 km).The analyses of the velocity model,gravity data,magnetic data,multichannel seismic profiles,and drilling data showed that high-velocity anomalies(>6.5 km/s)of small(thickness:1–2 km)and large(thickness:>5 km)scales were caused by igneous complexes in the multi-layer structure,which were active during the Palaeogene.Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array.Following the Indosinian movement,a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line.This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin. 展开更多
关键词 ocean bottom seismograph South Yellow Sea basin strata velocity structure wide-angle seismic data CSDP-2
下载PDF
Design and Structure Optimization of Plenum Chamber with Airfoil Baffle to Improve Its Outlet Velocity Uniformity in Heat Setting Machines
3
作者 钱淼 魏鹏郦 +2 位作者 林子杰 向忠 胡旭东 《Journal of Donghua University(English Edition)》 CAS 2023年第5期515-524,共10页
The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly af... The plenum chamber of a heat setting machine is a key structure for distributing hot air to different air channels.Its outlet velocity uniformity directly determines the heating uniformity of textiles,significantly affecting the heat setting performance.In a traditional heat setting machine,the outlet airflow maldistribution of the plenum chamber still exists.In this study,a novel plenum chamber with an airfoil baffle was established to improve the uniformity of the velocity distribution at the outlet in a heat setting machine.The structural influence of the plenum chamber on the velocity distribution was investigated using a computational fluid dynamics program.It was found that a chamber with a smaller outlet partition thickness had a better outlet velocity uniformity.The structural optimization of the plenum chamber was conducted using the particle swarm optimization algorithm.The outlet partition thickness,the transverse distance and the longitudinal distance of the optimized plenum chamber were 20,686.2 and 274.6 mm,respectively.Experiments were carried out.The experimental and simulated results showed that the optimized plenum chamber with an airfoil baffle could improve the outlet velocity uniformity.The air outlet velocity uniformity index of the optimized plenum chamber with an airfoil baffle was 4.75%higher than that of the plenum chamber without an airfoil baffle and 5.98%higher than that of the conventional chamber with a square baffle in a commercial heat setting machine. 展开更多
关键词 velocity distribution uniformity structure optimization numerical simulation AIRFOIL plenum chamber heat setting
下载PDF
P-wave velocity structure beneath reservoirs and surrounding areas in the lower Jinsha River
4
作者 Changzai Wang Jianping Wu +4 位作者 Lihua Fang Yaning Liu Jing Liu Yan Cai Poren Li 《Earthquake Science》 2023年第1期64-75,共12页
The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains,deep valleys,and swift currents in this area.This region also features complex tectonic structures and frequent eart... The lower reaches of the Jinsha River are rich in hydropower resources because of the high mountains,deep valleys,and swift currents in this area.This region also features complex tectonic structures and frequent earthquakes.After the impoundment of the reservoirs,seismic activity increased significantly.Therefore,it is necessary to study the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds,thus providing seismological support for subsequent earthquake prevention and disaster reduction work in reservoir areas.In this study,we selected the data of 7.670 seismic events recorded by the seismic networks in Sichuan.Yunnan,and Chongqing and the temporary seismic arrays deployed nearby.We then applied the double-difference tomography method to this data,to obtain the P-wave velocity structure and earthquake locations in the lower reaches of the Jinsha River and surrounds.The results showed that the Jinsha River basin has a complex lateral P-wave velocity structure.Seismic events are mainly distributed in the transition zones between high-and low-velocity anomalies,and seismic events are particularly intense in the Xiluodu and Baihetan reservoir areas.Vertical cross-sections through the Xiangjiaba and Xiluodu reservoir areas revealed an apparent high-velocity anomaly at approximately 6 km depth:this high-velocity anomaly plays a role in stress accumulation,with few earthquakes distributed inside the high-velocity body.After the impoundment of the Baihetan reservoir,the number of earthquakes in the reservoir area increased significantly.The seismic events in the reservoir area north of 27°N were related to the enhanced activity of nearby faults after impoundment:the earthquakes in the reservoir area south of 27°N were probably induced by additional loads(or regional stress changes),and the multiple microseismic events may have been caused by rock rupture near the main faults under high pore pressure. 展开更多
关键词 double-different tomography downstream of the Jinsha River earthquake location P-wave velocity structure reservoir earthquakes
下载PDF
3D S-wave velocity structure of the Ningdu basin in Jiangxi province inferred from ambient noise tomography with dense array
5
作者 Long Teng Xiangteng Wang +4 位作者 Chunlei Fu Feng Bao Jiajun Chong Sidao Ni Zhiwei Li 《Earthquake Research Advances》 CSCD 2023年第1期70-80,共11页
The Ningdu basin,located in southern Jiangxi province of southwest China,is one of the Mesozoic basin groups which has exploration prospects for geothermal energy.A study on the detailed velocity structure of the Ning... The Ningdu basin,located in southern Jiangxi province of southwest China,is one of the Mesozoic basin groups which has exploration prospects for geothermal energy.A study on the detailed velocity structure of the Ningdu basin can provide important information for geothermal resource exploration.In this study,we deployed a dense seismic array in the Ningdu basin to investigate the 3D velocity structure and discuss implications for geothermal exploration and geological evolution.Based on the dense seismic array including 35 short-period(5 s-100 Hz)seismometers with an average interstation distance of~5 km,Rayleigh surface wave dispersion curves were extracted from the continuous ambient noise data for surface wave tomographic inversion.Group velocity tomography was conducted and the 3D S-wave velocity structure was inverted by the neighborhood algorithm.The results revealed obvious low-velocity anomalies in the center of the basin,consistent with the low-velocity Cretaceous sedimentary rocks.The basement and basin-controlling fault can also be depicted by the S-wave velocity anomalies.The obvious seismic interface is about 2 km depth in the basin center and decreases to 700 m depth near the basin boundary,suggesting spatial thickness variations of the Cretaceous sediment.The fault features of the S-wave velocity profile coincide with the geological cognition of the western boundary basincontrolling fault,which may provide possible upwelling channels for geothermal fluid.This study suggests that seismic tomography with a dense array is an effective method and can play an important role in the detailed investigations of sedimentary basins. 展开更多
关键词 Ambient noise tomography Dense array S-wave velocity structure Ningdu basin Geothermal energy
下载PDF
Three-dimensional P-wave velocity structure of the crust beneath Hainan Island and its adjacent regions,China 被引量:10
6
作者 李志雄 雷建设 +3 位作者 赵大鹏 武巴特尔 沈繁銮 丘学林 《地震学报》 CSCD 北大核心 2008年第5期441-448,共8页
Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions... Using over 3 500 first P arrival times recorded by nine digital seismic stations from Hainan Digital Seismic Net-work during 1999~2005,a 3-D P-wave velocity model of the crust under Hainan Island and adjacent regions has been determined. The results show that the pattern of velocity anomalies in the shallower upper crust is somewhat associated with the surface geological tectonics in the region. A relative low-velocity anomaly appears north of the Wangwu-Wenjiao fault zone and a relative high-velocity anomaly appears south of the Wangwu-Wenjiao fault zone,corresponding to the depressed areas in north Hainan Island,where many volcanoes are frequently active and geothermal values are relatively higher,and the uplifted and stable regions in central and south of the Hainan Is-land. In the middle and lower crust velocities are relatively lower in east Hainan than those in west Hainan,possi-bly suggesting the existence of the upwelling of hot materials from the mantle in east Hainan. The pattern of veloc-ity anomalies also indicates that NW faults,i.e.,the Puqian-Qinglan fault,may be shallower,while the E-W Wangwu-Wenjiao fault may be deeper,which perhaps extends down to Moho depth or deeper. 展开更多
关键词 三维速度 P波 地壳结构 海南岛
下载PDF
Earthquake relocation and 3-dimensional crustal structure of P-wave velocity in cen-tral-western China 被引量:26
7
作者 杨智娴 于湘伟 +3 位作者 郑月军 陈运泰 倪晓晞 Winston CHAN 《地震学报》 CSCD 北大核心 2004年第1期19-29,共11页
采用中国中西部地区(2l°~36°N,98°~112°E)193个地震台在1992~1999年间记录到的9988次地震的Pg和Sg震相走时的读数资料,用Roecker的SPHYPIT90程序,反演了该地区三维地壳P波速度结构,并用SPHREL3D90程序进行... 采用中国中西部地区(2l°~36°N,98°~112°E)193个地震台在1992~1999年间记录到的9988次地震的Pg和Sg震相走时的读数资料,用Roecker的SPHYPIT90程序,反演了该地区三维地壳P波速度结构,并用SPHREL3D90程序进行了地震的重新定位.反演结果揭示了中国中西部地区地震P波速度结构明显的横向不均匀性,这些不同深度上波速的横向变化多以该地区的活动断裂为分界线.可以看出活动断裂两侧存在明显的速度反差.通过重新定位,得到了6459次地震的震源参数,这些精确定位的地震震中明显沿该区活动断裂呈现条带状分布,其范围和尺度清晰地表示了这一地区地震活动与活动断裂的紧密关系.其中,82%重新精确定位的事件的震源深度在20km以内.这一结果与笔者用双差地震定位法得到的重新定位的震源深度分布相一致. 展开更多
关键词 地震重新定位 P波速度结构 反演 双差地震定位法 地震活动 活动断裂
下载PDF
3-D velocity structure in the central-eastern part of Qilianshan 被引量:30
8
作者 张元生 周民都 +2 位作者 荣代潞 张立光 许中秋 《地震学报》 CSCD 北大核心 2004年第3期247-255,共9页
The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the ... The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters. 展开更多
关键词 祁连山中东段 微震观测 三维速度结构 震源参数 联合反演
下载PDF
Three dimensional shear wave velocity structure of crust and upper mantle in South China Sea and its adjacent regions by surface waveform inversion 被引量:22
9
作者 曹小林 朱介寿 +2 位作者 赵连锋 曹家敏 洪学海 《地震学报》 CSCD 北大核心 2001年第2期113-124,共12页
We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). I... We assembled approximately 328 seismic records. The data set was from 4 digitally recording long-period and broadband stations of CDSN. We carried out the inversion based on the partitioned waveform inversion (PWI). It partitions the large-scale optimization problem into a number of independent small-scale problems. We adopted surface waveform inversion with an equal block (2((2() discretization in order to acquire the images of shear velocity structure at different depths (from surface to 430 km) in the crust and upper-mantle. The resolution of all these anomalies has been established with (check-board( resolution tests. These results show significant difference in velocity, lithosphere and asthenosphere structure between South China Sea and its adjacent regions. 展开更多
关键词 面波波形 分块波形反演 三维S波速度结构 中国数字地震台网 “检验板”法 岩石圈
下载PDF
Swimming velocity of spherical squirmers in a square tube at finite fluid inertia
10
作者 Tongxiao JIANG Deming NIE Jianzhong LIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1481-1498,共18页
The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0... The three-dimensional lattice Boltzmann method(LBM)is used to simulate the motion of a spherical squirmer in a square tube,and the steady motion velocity of a squirmer with different Reynolds numbers(Re,ranging from 0.1 to 2)and swimming types is investigated and analyzed to better understand the swimming characteristics of microorganisms in different environments.First,as the Reynolds number increases,the effect of the inertial forces becomes significant,disrupting the squirmer's ability to maintain its theoretical velocity.Specifically,as the Reynolds number increases,the structure of the flow field around the squirmer changes,affecting its velocity of motion.Notably,the swimming velocity of the squirmer exhibits a quadratic relationship with the type of swimming and the Reynolds number.Second,the narrow tube exerts a significant inhibitory effect on the squirmer motion.In addition,although chirality does not directly affect the swimming velocity of the squirmer,it can indirectly affect the velocity by changing its motion mode. 展开更多
关键词 spherical squirmer swimming characteristics swimming velocity fow structure
下载PDF
Shear wave velocity model using HVSR inversion beneath Bandar Lampung City
11
作者 Ahmad Zaenudin Alhada Farduwin +1 位作者 Gede I Boy Darmawan Karyanto 《Earthquake Science》 2024年第4期337-351,共15页
The horizontal-to-vertical spectral ratio(HVSR)method has been used to characterize site-effect parameters that are indispensable in seismic hazard and risk-reduction studies in urban areas and rapid land-use planning... The horizontal-to-vertical spectral ratio(HVSR)method has been used to characterize site-effect parameters that are indispensable in seismic hazard and risk-reduction studies in urban areas and rapid land-use planning.This method is widely used because it is the cheapest and simplest geophysical method for the acquisition and processing stages.In subsequent developments,the HVSR method has been widely used to determine elastic rock parameters,particularly shear wave velocity(v_(S)),through the HVSR curve inversion process.Furthermore,the v_(S)structural model can be used to delineate the presence of complex geological structures,particularly faults and sedimentary basins.Bandar Lampung is a city in Lampung Province with many fault structures and groundwater basins to the south.There are 83 HVSR measurement points around Bandar Lampung for delineating the presence of fault structures and groundwater basins.We produced the HVSR curve from the measurement results and then performed an inversion process using the particle swarm optimization algorithm to obtain v_(S)for the depth profile.Subsequently,from this profile,we produced a two-dimensional(2D)lateral and vertical model.The mean v_(S)value was calculated from all the measurement points,and we found stiff soil layers reaching depths of approximately 5 m,with a value of v_(S)<330 m/s.A bedrock layer with a velocity exceeding 1250 m/s was visible at a depth of 100 m.Based on the 2D model,the v_(S)structure shows that the city of Bandar Lampung is divided into two zones,with a NW-SE boundary.The north-middle-eastern part of the city consists of harder rocks.This harder rock is characterized by extremely high v_(S)values,starting from a depth of 50 m.In contrast,the south-middle-west exhibits a low-moderate v_(S)anomaly associated with groundwater basins SW of the city.From the 2D v_(S)structural model,fault structures can be found along the city,characterized by a contrast of v_(S)values from low to medium and from medium to high. 展开更多
关键词 shear wave velocity HVSR fault structures groundwater basin Bandar Lampung City
下载PDF
Imaging 3-D crustal P-wave velocity structure of western Yunnan with bulletin data 被引量:17
12
作者 Jing Huang Xuejun Liu +1 位作者 Youjin Su Baoshan Wang 《Earthquake Science》 CSCD 2012年第2期151-160,共10页
Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting a... Western Yunnan is a region with intensive tectonic activity and serious earthquake risk. It is of significant importance to study three dimensional crustal structure of this region to understand the tectonic setting and disaster mechanism. Densification and digitalization of seismic networks in this region provides an opportunity to study the velocity structure with bulletin data. In this study, we collect P-wave data of 10 403 regional earthquakes recorded by 79 seismic stations from January 2008 to December 2010. In addition to first arrivals data (Pg with epieentral distance less than 200 km and Pn), the Pg (or P) data with epicentral distance more than 200 km are also considered as later direct arrivals in the tomographic inversion. We also compare the quantity and the quality of the seismic data before 2010 and after 2010. The test results show that adding the follow-up Pg phase can effectively improve the inversion ability of crustal imaging, and quantity and the data quality are significantly improved since 2010. The tomographie results show that: (1) The Honghe fault zone, which is the major fault systems in this region, may cut through the entire crust, and the velocity contrasts between two sides at lower crust beneath the Honghe fault are estimated at higher than 10%, while the velocity difference below Nujiang fault zone extends only in the upper crust; (2) Most of the earthquakes in the region occurred at the interface of high-velocity media and low-velocity media, i.e., the areas with high velocity gradient, which has been validated in other areas. 展开更多
关键词 regional earthquake 3-D velocity structure later phase Yunnan region
下载PDF
S-wave velocity structure beneath Changbaishan volcano inferred from receiver function 被引量:6
13
作者 Jianping Wu Yuehong Ming Lihua Fang Weilai Wang 《Earthquake Science》 CSCD 2009年第4期409-416,共8页
The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath ... The S wave velocity structure in Changbaishan volcanic region was obtained from teleseismic receiver function modeling. The results show that there exist distinct low velocity layers in crust in volcano area. Beneath WQD station near to the Tianchi caldera the low velocity layer at 8 km depth is 20 km thick with the lowest S-wave velocity about 2.2 km/s At EDO station located 50 km north of Tianchi caldera, no obvious crustal low velocity layer is detected. In the volcanic region, the thickness of crustal low velocity layer is greater and the lowest velocity is more obvious with the distance shorter to the caldera. It indicates the existence of the high temperature material or magma reservoir in crust near the Tianchi caldera. The receiver functions and inversion result from different back azimuths at CBS permanent seismic station show that the thickness of near surface low velocity layer and Moho depth change with directions. The near surface low velocity layer is obviously thicker in south direction. The Moho depth shows slight uplifting in the direction of the caldera located. We con- sider that the special near surface velocity structure is the main cause of relatively lower prominent frequency of volcanic earthquake waveforms recorded by CBS station. The slight uplifting of Moho beneath Tianchi caldera indicates there is a material exchanging channel between upper mantle and magma reservoir in crust. 展开更多
关键词 CHANGBAISHAN VOLCANO seismic velocity structure receiver function
下载PDF
Crustal velocity structures beneath North China revealed by ambient noise tomography 被引量:7
14
作者 Lihua Fang Jianping Wu +2 位作者 Zhifeng Ding Weilai Wang Giuliano Francesco Panza 《Earthquake Science》 CSCD 2010年第5期477-486,共10页
We collected continuous noise waveform data from January 2007 to February 2008 recorded by 190 broadband and 10 very broadband stations of the North China Seismic Array. The study region is divided into grid with inte... We collected continuous noise waveform data from January 2007 to February 2008 recorded by 190 broadband and 10 very broadband stations of the North China Seismic Array. The study region is divided into grid with interval 0.25°×0.25°, and group velocity distribution maps between 4 s and 30 s are obtained using ambient noise tomography method. The lateral resolution is estimated to be 20-50 km for most of the study area. We construct a 3-D S wave velocity model by inverting the pure path dispersion curve at each grid using a genetic algorithm with smoothing constraint. The crustal structure observed in the model includes sedimentary basins such as North China basin, Yanqing-Huailai basin and Datong basin. A well-defined low velocity zone is observed in the Beijing-Tianjin-Tangshan region in 22-30 km depth range, which may be related to the upwelling of hot mantle material. The high velocity zone near Datong, Shuozhou and Qingshuihe within the depth range of 1-23 km reveals stable characteristics of Ordos block. The Taihangshan front fault extends to 12 km depth at least. 展开更多
关键词 seismic noise surface wave tomography velocity structure genetic algorithm North China
下载PDF
Seismic Velocity Structure and Composition of the Continental Crust of Eastern China 被引量:5
15
作者 WANGYang CAOJiamin ZHUJieshou 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第1期291-297,共7页
On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geother... On the basis of a one-by-one latitude-longitude grid three-dimensional seismic velocity model, the crustal P-wave velocity structure in eastern China (105-125°E and 18-41°N) is obtained, and a set of geotherms for each grid is established for P-T correction on P-wave velocities. The average depths of sub-crustal layers and their average P-wave velocities of 18 tectonic units in eastern China are exhibited. Our result presents a 32-34 km thick crust beneath eastern China, which is thinner than previous studies, with an average velocity of 6.54 km/s, corresponding to a 5 kg/m3 variation in crustal mean density. The thicker upper but thinner middle and lower crust results in a lower average seismic velocity of eastern China. An intermediate crustal composition with a SiO2 content of 59.7 wt% has been estimated. However, there exists a significant lateral variation in the crustal structures among the tectonic units of eastern China. The structure and composition features of some regions in eastern China indicate that extension has played an important role in the continental crust evolution of eastern China. 展开更多
关键词 crustal composition seismic velocity structure GEOTHERM DENSITY eastern China
下载PDF
3-D velocity structure in the central-eastern part of Qilianshan 被引量:8
16
作者 ZHANG Yuan-sheng(张元生) +7 位作者 ZHOU Min-du(周民都) RONG Dai-lu(荣代潞) ZHANG Li-guang(张立光) XU Zhong-qiu(许中秋) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第3期272-281,共10页
The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the ... The 3-D velocity tomography image of the central-eastern part of Qilianshan is obtained by the joint inversion of 3-D velocity structure and focal parameters based on the S-P data of micro-earthquakes recorded by the digital seismic network set up for a Sino-French cooperation program since 1996. The inversed velocity structure does primarily reflect some important features of the deep structure in the region and provide the scientific background for the further study of active tectonic structure and the calculation of earthquake parameters. 展开更多
关键词 central-eastern Qilianshan micro-earthquake observation 3-D velocity structure focal pa-rameters joint inversion
下载PDF
Group velocity distribution of Rayleigh waves and crustal and upper mantle velocity structure of the Chinese mainland and its vicinity 被引量:5
17
作者 何正勤 丁志峰 +2 位作者 叶太兰 孙为国 张乃铃 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第3期269-275,共7页
Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods ... Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period. 展开更多
关键词 Rayleigh wave group velocity distribution crust and upper mantle velocity structure
下载PDF
Joint Inversion of the 3D P Wave Velocity Structure of the Crust and Upper Mantle under the Southeastern Margin of the Tibetan Plateau Using Regional Earthquake and Teleseismic Data 被引量:12
18
作者 LI Dahu LIAO Hua +4 位作者 DING Zhifeng ZHAN Yan WU Pingping XU Xiaoming ZHENG Chen 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第1期16-33,共18页
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background o... The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai-Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in China's Mainland and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional (3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai-Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north-south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by low- velocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan-Dian and Songpan-Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan-Ganzi Block and the sub-block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80-120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background for the area's strong earthquake activity. 展开更多
关键词 3D P-wave velocity structure China seismic array detection Panxi region Chuan-DianBlock Daliangshan Block southeastern margin of Qinghai-Tibet Plateau
下载PDF
A study on 3-D velocity structure of crust and upper mantle in Sichuan -Yunnan region, China 被引量:6
19
作者 王椿镛 Mooney W.D +3 位作者 王溪莉 吴建平 楼海 王飞 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第1期1-17,共17页
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is deter... Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others show the characteristic of tectonic boundary, indicating that the faults likely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the SichuanYunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the India and the Asia plates. The crustal velocity in the SichuanYunnan rhombic block generally shows normal value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below. 展开更多
关键词 regional earthquake Moho discontinuity 3-D velocity structure network method plate collision SEISMICITY
下载PDF
Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan 被引量:19
20
作者 Feng Long ZhiWei Zhang +5 位作者 YuPing Qi MingJian Liang Xiang Ruan WeiWei Wu GuoMao Jiang LongQuan Zhou 《Earth and Planetary Physics》 CSCD 2020年第2期163-177,共15页
In order to understand the crustal structure and tectonic background of the Changning–Gongxiang area, southeastern Sichuan Province, where a series of moderate-to-strong earthquakes occurred in recent years, we utili... In order to understand the crustal structure and tectonic background of the Changning–Gongxiang area, southeastern Sichuan Province, where a series of moderate-to-strong earthquakes occurred in recent years, we utilized the seismic phase data both from a local dense array and from the regional seismic networks;we used the tomoDD program to invert for the high-resolution three-dimensional velocity structure within the depth range of 0–10 km and for accurate hypocentral locations in this area. We analyzed the seismogenic structures for the events of Xingwen M5.7 in 2018 and Gongxian M5.3 and Changning M6.0 in 2019. The results show that:(1) widespread lateral inhomogeneity exists in the velocity structure of the study area, and the location of the velocity anomaly is largely consistent with known structures. In the range of distinguishable depth, the inhomogeneity decreases with increasing depth, and the velocity structure anomalies in some areas are continuous in depth;(2) earthquakes occurred in clusters, showing the characteristics of zonal folding trends in the NW-SE and NE-SW directions;the focal depth in the area is generally shallow in both the sedimentary cap and the crystalline basement. The seismogenic structures of small earthquake clusters are different in size and occurrence in different sections, and the clusters occurred mostly in regions with high P-or S-wave velocities;(3) synthesis of a variety of data suggests that the seismogenic structures of the Xingwen M5.7 and Changning M6.0 earthquakes are associated with slip faults that trend NW-SE in, respectively, the south wing and the axis of the Changning–Shuanghe anticline, while that of the Gongxian M5.3 earthquake is associated with thrust faults that trend N-S in the Jianwu syncline region. The dynamic sources of the three earthquakes are all from the SE pushing of the Qinghai–Tibet block on the Sichuan basin;(4) the risk of future strong earthquakes in this area must be reevaluated in light of the facts(a)that in recent years, moderate-to-strong earthquake swarms have occurred frequently in southeast Sichuan;(b) that the complex structural area exhibits the easy-to-trigger characteristic, and(c) that the small-scale faults in this area are characterized by the phenomenon of stress "lock and release". 展开更多
关键词 southeastern Sichuan Sichuan Basin three-dimensional velocity structure earthquake precise location
下载PDF
上一页 1 2 119 下一页 到第
使用帮助 返回顶部