Cryogenic energy storage(CES)is a viable method for grid-scale electrical energy storage.Considering the high energy density and mature application of liquefied natural gas(LNG),we proposed an LNG cryogenic energy sto...Cryogenic energy storage(CES)is a viable method for grid-scale electrical energy storage.Considering the high energy density and mature application of liquefied natural gas(LNG),we proposed an LNG cryogenic energy storage(LNGES)system.A steady-state process model of the LNGES system was established using Aspen HYSYS.The effects of the natural gas composition and key operating parameters such as the charging pressure,discharging pressure,throttling temperature,and liquid storage pressure on the system performance were investigated.A multi-parameter genetic algorithm model built using the MATLAB software was used to optimize the LNGES system to optimize the round-trip efficiency(RTE).Then,an exergy analysis of the optimal configuration was conducted.The results suggested that the LNGES system could achieve optimal RTE and exergy efficiency values of 60.14%and 71.64%,respectively.Exergy destruction mainly occurred during the compression,throttling,expansion,and heat exchange.The proposed LNGES system could be a promising candidate for the large-scale application of CES technology in power grids and gas networks.展开更多
Cryogenic energy storage(CES)has garnered attention as a large-scale electric energy storage technology for the storage and regulation of intermittent renewable electric energy in power networks.Nitrogen and argon can...Cryogenic energy storage(CES)has garnered attention as a large-scale electric energy storage technology for the storage and regulation of intermittent renewable electric energy in power networks.Nitrogen and argon can be found in the air,whereas methane is the primary component of natural gas,an important clean energy resource.Most research on CES focuses on liquid air energy storage(LAES),with its typical round-trip efficiency(RTE)being approximately 50%(theoretical).This study aims to explore the feasibility of using different gases as working media in CES systems,and consequently,to achieve a high system efficiency by constructing four steady-state process models for the CES systems with air,nitrogen,argon,and methane as working media using Aspen HYSYS.A combined single-parameter analysis and multi-parameter global optimization method was used for system optimization.Further,a group of key independent variables were analysed carefully to determine their reasonable ranges to achieve the ideal system performance,that is,RTE and liquefaction ratio through a single-parameter analysis.Consequently,a multi-parameter genetic algorithm was adopted to globally optimize the CES systems with different working media,and the energy and exergy analyses were conducted for the CES systems under their optimal conditions.The results indicated the high cycle efficiency of methane and a low irreversible loss in the liquefaction cycle.Moreover,the Joule-Thomson valve inlet temperature and charging and discharging pressures considerably affected the system performance.However,exergy loss in the CES system occurred primarily in the compressor,turbine,and liquefaction processes.The maximum optimal RTE of 55.84%was achieved in the liquid methane energy storage(LMES)system.Therefore,the LMES system is expected to exhibit potential for application in the CES technology to realize the integration of natural gas pipelines with renewable power grids on a large scale.Moreover,the results of study have important theoretical significance for the innovation of the CES technology.展开更多
Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range o...Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.:52076159).
文摘Cryogenic energy storage(CES)is a viable method for grid-scale electrical energy storage.Considering the high energy density and mature application of liquefied natural gas(LNG),we proposed an LNG cryogenic energy storage(LNGES)system.A steady-state process model of the LNGES system was established using Aspen HYSYS.The effects of the natural gas composition and key operating parameters such as the charging pressure,discharging pressure,throttling temperature,and liquid storage pressure on the system performance were investigated.A multi-parameter genetic algorithm model built using the MATLAB software was used to optimize the LNGES system to optimize the round-trip efficiency(RTE).Then,an exergy analysis of the optimal configuration was conducted.The results suggested that the LNGES system could achieve optimal RTE and exergy efficiency values of 60.14%and 71.64%,respectively.Exergy destruction mainly occurred during the compression,throttling,expansion,and heat exchange.The proposed LNGES system could be a promising candidate for the large-scale application of CES technology in power grids and gas networks.
基金the National Natural Science Foundation of China(Grant No:52076159).
文摘Cryogenic energy storage(CES)has garnered attention as a large-scale electric energy storage technology for the storage and regulation of intermittent renewable electric energy in power networks.Nitrogen and argon can be found in the air,whereas methane is the primary component of natural gas,an important clean energy resource.Most research on CES focuses on liquid air energy storage(LAES),with its typical round-trip efficiency(RTE)being approximately 50%(theoretical).This study aims to explore the feasibility of using different gases as working media in CES systems,and consequently,to achieve a high system efficiency by constructing four steady-state process models for the CES systems with air,nitrogen,argon,and methane as working media using Aspen HYSYS.A combined single-parameter analysis and multi-parameter global optimization method was used for system optimization.Further,a group of key independent variables were analysed carefully to determine their reasonable ranges to achieve the ideal system performance,that is,RTE and liquefaction ratio through a single-parameter analysis.Consequently,a multi-parameter genetic algorithm was adopted to globally optimize the CES systems with different working media,and the energy and exergy analyses were conducted for the CES systems under their optimal conditions.The results indicated the high cycle efficiency of methane and a low irreversible loss in the liquefaction cycle.Moreover,the Joule-Thomson valve inlet temperature and charging and discharging pressures considerably affected the system performance.However,exergy loss in the CES system occurred primarily in the compressor,turbine,and liquefaction processes.The maximum optimal RTE of 55.84%was achieved in the liquid methane energy storage(LMES)system.Therefore,the LMES system is expected to exhibit potential for application in the CES technology to realize the integration of natural gas pipelines with renewable power grids on a large scale.Moreover,the results of study have important theoretical significance for the innovation of the CES technology.
基金the partial support from UK EPSRC Manifest Project under EP/N032888/1,EP/P003605/1a UK FCO Science&Innovation Network grant(Global Partnerships Fund)an IGI/IAS Global Challenges Funding(IGI/IAS ID 3041)。
文摘Liquid air energy storage(LAES)has been regarded as a large-scale electrical storage technology.In this paper,we first investigate the performance of the current LAES(termed as a baseline LAES)over a far wider range of charging pressure(1 to 21 MPa).Our analyses show that the baseline LAES could achieve an electrical round trip efficiency(e RTE)above 60%at a high charging pressure of 19 MPa.The baseline LAES,however,produces a large amount of excess heat particularly at low charging pressures with the maximum occurred at~1 MPa.Hence,the performance of the baseline LAES,especially at low charging pressures,is underestimated by only considering electrical energy in all the previous research.The performance of the baseline LAES with excess heat is then evaluated which gives a high e RTE even at lower charging pressures;the local maximum of 62%is achieved at~4 MPa.As a result of the above,a hybrid LAES system is proposed to provide cooling,heating,hot water and power.To evaluate the performance of the hybrid LAES system,three performance indicators are considered:nominal-electrical round trip efficiency(ne RTE),primary energy savings and avoided carbon dioxide emissions.Our results show that the hybrid LAES can achieve a high ne RTE between 52%and 76%,with the maximum at~5 MPa.For a given size of hybrid LAES(1 MW×8 h),the primary energy savings and avoided carbon dioxide emissions are up to 12.1 MWh and 2.3 ton,respectively.These new findings suggest,for the first time,that small-scale LAES systems could be best operated at lower charging pressures and the technologies have a great potential for applications in local decentralized micro energy networks.