期刊文献+
共找到368篇文章
< 1 2 19 >
每页显示 20 50 100
Single-fundamental-mode cryogenic(3.6 K)850-nm oxideconfined VCSEL
1
作者 Anjin Liu Chenxi Hao +6 位作者 Jingyu Huo Hailong Han Minglu Wang Bao Tang Lingyun Li Lixing You Wanhua Zheng 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期69-73,共5页
Cryogenic oxide-confined vertical-cavity surface-emitting laser(VCSEL)has promising application in cryogenic optical interconnect for cryogenic computing.In this paper,we demonstrate a cryogenic 850-nm oxide-confined ... Cryogenic oxide-confined vertical-cavity surface-emitting laser(VCSEL)has promising application in cryogenic optical interconnect for cryogenic computing.In this paper,we demonstrate a cryogenic 850-nm oxide-confined VCSEL at around 4 K.The cryogenic VCSEL with an optical oxide aperture of 6.5μm in diameter can operate in single fundamental mode with a side-mode suppression-ratio of 36 dB at 3.6 K,and the fiber-coupled output power reaches 1 mW at 5 mA.The small signal modulation measurements at 298 and 292 K show the fabricated VCSEL has the potential to achieve a high modulation bandwidth at cryogenic temperature. 展开更多
关键词 VCSEL cryogenic temperature cryogenic computing optical interconnect
下载PDF
Room and cryogenic deformation behavior of AZ61 and AZ61-xCaO(x=0.5,1 wt.%)alloy
2
作者 Umer Masood Chaudry Hafiz Muhammad Rehan Tariq +2 位作者 Nooruddin Ansari Soo Yeol Lee Tea-Sung Jun 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1996-2009,共14页
This study investigates the influence of CaO(0.5,1(wt.%))alloying on the microstructural evolution,texture development and deformation behavior of AZ61 magnesium alloy.The uniaxial tension tests at room(RT)and cryogen... This study investigates the influence of CaO(0.5,1(wt.%))alloying on the microstructural evolution,texture development and deformation behavior of AZ61 magnesium alloy.The uniaxial tension tests at room(RT)and cryogenic(CT,-150℃)temperature were performed to investigate the twinability and dislocation behavior and its consequent effect on flow stress,ductility and strain hardening rate.The results showed that the AZ61-1CaO exhibited superior strength/ductility synergy at RT with a yield strength(YS)of 223 MPa and a ductility of 23% as compared to AZ61(178 MPa,18.5%)and AZ61-0.5CaO(198 MPa,21%).Similar trend was witnessed for all the samples during CT deformation,where increase in the YS and decrease in ductility were observed.The Mtex tools based in-grain misorientation axis(IGMA)analysis of RT deformed samples revealed the higher activities of prismatic slip in AZ61-CaO,which led to superior ductility.Moreover,subsequent EBSD analysis of CT deformed samples showed the increased fraction of fine{10-12}tension twins and nucleation of multiple{10-12}twin variants caused by higher local stress concentration at the grain boundaries,which imposed the strengthening by twin-twin interaction.Lastly,the detailed investigations on strengthening contributors showed that the dislocation strengthening has the highest contribution towards strength in all samples. 展开更多
关键词 Magnesium TWINNING Twinning variant EBSD Cryogenic deformation
下载PDF
Effect of quenching cooling rate on residual stress and microstructure evolution of 6061 aluminum alloy
3
作者 HUANG Ke YI You-ping +4 位作者 HUANG Shi-quan HE Hai-lin LIU Jie HUA Hong-en TANG Yun-jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2167-2180,共14页
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ... In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process. 展开更多
关键词 6061 aluminum alloy residual stress cooling rate cryogenic cooling mechanical properties microstructure evolution
下载PDF
High density dislocations enhance creep ageing response and mechanical properties in 2195 alloy sheet
4
作者 WEI Shuo MA Pei-pei +3 位作者 CHEN Long-hui YANG Jian-shi ZHAN Li-hua LIU Chun-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2194-2209,共16页
The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formabilit... The creep strain of conventionally treated 2195 alloy is very low,increasing the difficulty of manufacturing Al-Cu-Li alloy sheet parts by creep age forming.Therefore,finding a solution to improve the creep formability of Al-Cu-Li alloy is vital.A thorough comparison of the effects of cryo-deformation and ambient temperature large pre-deformation(LPD)on the creep ageing response in the 2195 alloy sheet at 160℃with different stresses has been made.The evolution of dislocations and precipitates during creep ageing of LPD alloys are revealed by X-ray diffraction and transmission electron microscopy.High-quality 2195 alloy sheet largely pre-deformed by 80%without edge-cracking is obtained by cryo-rolling at liquid nitrogen temperature,while severe edge-cracking occurs during room temperature rolling.The creep formability and strength of the 2195 alloy are both enhanced by introducing pre-existing dislocations with a density over 1.4×10^(15)m^(−2).At 160℃and 150 MPa,creep strain and creep-aged strength generally increases by 4−6 times and 30−50 MPa in the LPD sample,respectively,compared to conventional T3 alloy counterpart.The elongation of creep-aged LPD sample is low but remains relevant for application.The high-density dislocations,though existing in the form of dislocation tangles,promote the formation of refined T1 precipitates with a uniform dispersion. 展开更多
关键词 creep ageing Al-Cu-Li alloy high dislocation density cryogenic rolling dislocation strengthening
下载PDF
Tensile deformation of fine-grained Mg at 4K,78K and 298K
5
作者 M.Walag A.Kula +3 位作者 P.Noga T.Tokarski G.Cios M.Niewczas 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2534-2556,共23页
The impact of grain size, ranging from 0.9 μm to 9 μm, on the mechanical properties of commercially pure Mg is investigated at temperatures of 4K, 78K, and 298K. The mechanisms governing plastic flow are influenced ... The impact of grain size, ranging from 0.9 μm to 9 μm, on the mechanical properties of commercially pure Mg is investigated at temperatures of 4K, 78K, and 298K. The mechanisms governing plastic flow are influenced by both grain size and temperature. At 4K and 78K, dominant deformation modes in Mg involve dislocation glide and extension twinning, regardless of grain size. The interactions between basal and non-basal dislocations and dislocations with grain boundaries promote an unusually high rate of work hardening in the plastic regime, leading to premature failure. The yield stress follows the Hall-Petch relationship σy~ k/√d, with the slope k increasing with decreasing temperature. At 298K, in addition to dislocation glide and twinning, grain boundary sliding(GBS) becomes significant in samples with grain sizes below 3 μm, considerably enhancing the material's deformability. GBS activation provides an additional recovery mechanism for dislocations accumulating at grain boundaries, facilitating their absorption during sliding and rotation. Analysis of σ Θ relationship suggests that the basal slip is the dominant dislocation mode in Mg at 298K. Decreasing grain size suppresses dislocation activity and twinning and increases GBS, resulting in lower Θ and σ Θ values. Suppressing conventional deformation modes coupled with enhanced GBS yields stress softening, breaking down the Hall-Petch relationship in Mg below 3 μm grain size, leading to an inverse Hall-Petch behaviour. The work reports new data on the strength, ductility, work hardening and fracture behaviour, and their variations with Mg grain size across different temperature regimes. 展开更多
关键词 Polycrystalline Mg Mechanical properties Deformation mechanisms WORK-HARDENING Texture evolution Cryogenic temperatures Hall-Petch relationship
下载PDF
Reliable ferroelectricity down to cryogenic temperature in wakeup free Hf_(0.5)Zr_(0.5)O_(2)thin films by thermal atomic layer deposition
6
作者 Shuyu Wu Rongrong Cao +6 位作者 Hao Jiang Yu Li Xumeng Zhang Yang Yang Yan Wang Yingfen Wei Qi Liu 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期33-37,共5页
The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are fre... The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are free from the wake-up effect are investigated systematically from room temperature(300 K)to cryogenic temperature(30 K).We observe a consistent decrease in permittivity(εr)and a progressive increase in coercive electric field(Ec)as temperatures decrease.Our investigation reveals exceptional stability in the double remnant polarization(2P_(r))of our ferroelectric thin films across a wide temperature range.Specifically,at 30 K,a 2P_(r)of 36μC/cm^(2)under an applied electric field of 3.0 MV/cm is achieved.Moreover,we observed a reduced fatigue effect at 30 K in comparison to 300 K.The stable ferroelectric properties and endurance characteristics demonstrate the feasibility of utilizing HfO_(2)based ferroelectric thin films for cryo-electronics applications. 展开更多
关键词 hafnia-zirconia solid solution FERROELECTRICITY cryogenic temperature wake-up effect
下载PDF
Cryogenic and conventional milling of AZ91 magnesium alloy
7
作者 Vikas Marakini Srinivasa Pai P +1 位作者 Gururaj Bolar Bhaskara P Achar 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2503-2519,共17页
Use of magnesium is the need of the hour due to its low density as well as its high strength-to-weight and stiffness-to-weight ratio etc.This study focuses on the effectiveness of liquid nitrogen(LN_(2))assisted cryog... Use of magnesium is the need of the hour due to its low density as well as its high strength-to-weight and stiffness-to-weight ratio etc.This study focuses on the effectiveness of liquid nitrogen(LN_(2))assisted cryogenic machining on the surface integrity(SI)characteristics of AZ91 magnesium alloy.Face milling using uncoated carbide inserts have been performed under liquid nitrogen(LN_(2))assisted cryogenic condition and compared with conventional(dry)milling.Experiments are performed using machining parameters in terms of cutting speeds of 325,475,625 m/min,feed rates of 0.05,0.1,0.15 mm/teeth and depth of cuts of 0.5,1,1.5 mm respectively.Most significant surface integrity characteristics such as surface roughness,microhardness,microstructure,and residual stresses have been investigated.Behaviour of SI characteristics with respect to milling parameters have been identified using statistical technique such as ANOVA and signal-to-noise(S/N)ratio plots.Additionally,the multi criteria decision making(MCDM)techniques such as additive ratio assessment method(ARAS)and complex proportional assessment(COPRAS)have been utilized to identify the optimal conditions for milling AZ91 magnesium alloy under both dry and cryogenic conditions.Use of LN_(2)during machining,resulted in reduction in machining temperature by upto 29%with a temperature drop from 251.2℃under dry condition to 178.5℃in cryogenic condition.Results showed the advantage of performing cryogenic milling in improving the surface integrity to a significant extent.Cryogenic machining considerably minimized the roughness by upto 28%and maximised the microhardness by upto 23%,when compared to dry machining.Cutting speed has caused significant impact on surface roughness(95.33%-dry,92.92%-cryogenic)and surface microhardness(80.33%-dry,82.15%-cryogenic).Due to the reduction in machining temperature,cryogenic condition resulted in compressive residual stresses(maximumσ║=-113 MPa)on the alloy surface.Results indicate no harm to alloy microstructure in both conditions,with no alterations to grain integrity and minimal reduction in the average grain sizes in the near machined area,when compared to before machined(base material)surface.The MCDM approach namely ARAS and COPRAS resulted in identical results,with the optimal condition being cutting speed of 625 m/min,a feed rate of 0.05 mm/teeth,and a depth of cut of 0.5 mm for both dry and cryogenic environments. 展开更多
关键词 Magnesium alloy Cryogenic machining ROUGHNESS MICROHARDNESS Microstructure Residual stress Multi criteria decision making
下载PDF
Effect of Cryogenic Treatment on Microstructure and Tribological Property Evolution of Electron Beam Melted Ti6Al4V
8
作者 黄西娜 MA Xiaowen XU Tianyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1010-1017,共8页
Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated usi... Cryogenic treatment was used to improve the tribological properties of Ti6Al4V artificial hip joint implants.Cryogenic treatment at-196℃with different holding time were carried out on Ti6Al4V specimens fabricated using electron beam melting(EBM),and their microstructure and tribological properties evolution were systematically analyzed by scanning electron microscopy(SEM),vickers hardness,and wear tests.The experimental results show that the as-fabricated specimen consists of lamellarαphase andβcolumnar crystal.While,the thickness of lamellarαphase decreased after cryogenic treatment.In addition,it can be found that the fineαphase was precipitated and dispersed between the lamellarαphase with the holding time increase.Vickers hardness shows a trend of first increasing and then decreasing.The wear rate of the specimen cryogenic treated for 24 h is the minimum and the average friction coefficient is 0.50,which is reduced by 14.61%compared with the as-fabricated.The wear mechanism of the as-fabricated specimen is severe exfoliation,adhesive,abrasive,and slight fatigue wear.However,the specimen cryogenic treated for 24 h shows slight adhesive and abrasive wear.It can be concluded that it is feasibility of utilizing cryogenic treatment to reduce the wear of EBMed Ti6Al4V. 展开更多
关键词 electron beam melting(EBM) cryogenic treatment MICROSTRUCTURE vickers hardness tribological property
下载PDF
Cryogenic springback of 2219-W aluminum alloy sheet through V-shaped bending
9
作者 Xiao-bo FAN Qi-liang WANG +1 位作者 Fang-xing WU Xu-gang WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3185-3193,共9页
A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism w... A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism was elucidated through mechanical analyses and numerical simulations.The results indicated that the springback angle at cryogenic temperatures was greater than that at room temperature.The springback angle increased further as the temperature returned to ambient conditions,attributed to the combined effects of the “dual enhancement effect” and thermal expansion.Notably,a critical fillet radius made the springback angle zero for 90° V-shaped bending.The critical fillet radius at cryogenic temperatures was smaller than that at room temperature,owing to the influence of temperature variations on the bending moment ratio between the forward bending section at the fillet and the reverse bending section of the straight arm. 展开更多
关键词 2219-W aluminum alloy cryogenic forming V-shape bending SPRINGBACK critical fillet radius
下载PDF
Thermally-induced cracking behaviors of coal reservoirs subjected to cryogenic liquid nitrogen shock
10
作者 Songcai Han Qi Gao +5 位作者 Xinchuang Yan Lile Li Lei Wang Xian Shi Chuanliang Yan Daobing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2894-2908,共15页
The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t... The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs. 展开更多
关键词 Coal reservoirs Cryogenic shock Thermal cracking behaviors Fracture morphology
下载PDF
Cryogenic transmission electron microscopy on beam-sensitive materials and quantum science
11
作者 王刚 林君浩 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期9-29,共21页
Transmission electron microscopy(TEM)offers unparalleled atomic-resolution imaging of complex materials and heterogeneous structures.However,high-energy imaging electrons can induce structural damage,posing a challeng... Transmission electron microscopy(TEM)offers unparalleled atomic-resolution imaging of complex materials and heterogeneous structures.However,high-energy imaging electrons can induce structural damage,posing a challenge for electron-beam-sensitive materials.Cryogenic TEM(Cryo-TEM)has revolutionized structural biology,enabling the visualization of biomolecules in their near-native states at unprecedented detail.The low electron dose imaging and stable cryogenic environment in Cryo-TEM are now being harnessed for the investigation of electron-beam-sensitive materials and low-temperature quantum phenomena.Here,we present a systematic review of the interaction mechanisms between imaging electrons and atomic structures,illustrating the electron beam-induced damage and the mitigating role of Cryo-TEM.This review then explores the advancements in low-dose Cryo-TEM imaging for elucidating the structures of organic-based materials.Furthermore,we showcase the application of Cryo-TEM in the study of strongly correlated quantum materials,including the detection of charge order and novel topological spin textures.Finally,we discuss the future prospects of Cryo-TEM,emphasizing its transformative potential in unraveling the complexities of materials and phenomena across diverse scientific disciplines. 展开更多
关键词 cryogenic TEM low dose imaging quantum materials
下载PDF
Bio-Based Rigid Polyurethane Foams for Cryogenic Insulation
12
作者 Laima Vevere Beatrise Sture +2 位作者 Vladimir Yakushin Mikelis Kirpluks Ugis Cabulis 《Journal of Renewable Materials》 EI CAS 2024年第3期585-602,共18页
Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled... Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled polyethylene terephthalate were used to develop rigid PU foam formulations.The 4th generation physical blowing agents with low global warming potential and low ozone depletion potential were used to develop rigid PU foam cryogenic insulation with excellent mechanical and thermal properties.Obtained rigid PU foams had a thermal conductivity coefficient as low as 0.0171 W/m·K and an apparent density of 37-40 kg/m^(3).The developed rigid PU foams had anisotropic compression strength properties,which were higher parallel to the foaming direction.Moreover,the compression strength was also influenced by the type of applied bio-based polyol.The bio-based polyols with higher OH group functionality delivered higher crosslinking density of polymer matrix;thus,the mechanical properties were also higher.The mechanical strength of the foams increased when materials were tested at liquid nitrogen temperature due to the stiffening of the polymer matrix.The thermal properties of the developed materials were determined using differential scanning calorimetry,dynamic mechanical analysis,and thermogravimetric analysis methods.Lastly,the developed rigid PU foams had good adhesion to the aluminium substrate before and after applying cyroshock and an excellent safety coefficient of 4-5.Rigid PU foams developed using Solstice LBA delivered adhesion strength of~0.5 MPa and may be considered for application as cryogenic insulation in the aerospace industry. 展开更多
关键词 Cryogenic insulation polyurethanes tall oil 4th generation physical blowing agents
下载PDF
A cryogenic radio-frequency ion trap for a 40Ca^(+) optical clock
13
作者 曾孟彦 黄垚 +6 位作者 张宝林 马子晓 郝艳梅 胡如明 张华青 管桦 高克林 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期232-239,共8页
A liquid-nitrogen cryogenic40Ca^(+)optical clock is presented that is designed to greatly reduce the blackbody radiation(BBR) shift. The ion trap, the electrodes and the in-vacuum BBR shield are installed under the li... A liquid-nitrogen cryogenic40Ca^(+)optical clock is presented that is designed to greatly reduce the blackbody radiation(BBR) shift. The ion trap, the electrodes and the in-vacuum BBR shield are installed under the liquid-nitrogen container,keeping the ions in a cryogenic environment at liquid-nitrogen temperature. Compared with the first design in our previous work, many improvements have been made to increase the performance. The liquid-nitrogen maintenance time has been increased by about three times by increasing the volume of the liquid-nitrogen container;the trap position recovery time after refilling the liquid-nitrogen container has been decreased more than three times by using a better fixation scheme in the liquid-nitrogen container;and the magnetic field noise felt by the ions has been decreased more than three times by a better design of the magnetic shielding system. These optimizations make the scheme for reducing the BBR shift uncertainty of liquid-nitrogen-cooled optical clocks more mature and stable, and develop a stable lock with a narrower linewidth spectrum,which would be very beneficial for further reducing the overall systematic uncertainty of optical clocks. 展开更多
关键词 cryogenics ion trapping 40Ca^(+)optical clock
下载PDF
Kinetic Limits of Graphite Anode for Fast‑Charging Lithium‑Ion Batteries 被引量:4
14
作者 Suting Weng Gaojing Yang +9 位作者 Simeng Zhang Xiaozhi Liu Xiao Zhang Zepeng Liu Mengyan Cao Mehmet Nurullah Ateş Yejing Li Liquan Chen Zhaoxiang Wang Xuefeng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期518-529,共12页
Fast-charging lithium-ion batteries are highly required,especially in reducing the mileage anxiety of the widespread electric vehicles.One of the biggest bottlenecks lies in the sluggish kinetics of the Li^(+)intercal... Fast-charging lithium-ion batteries are highly required,especially in reducing the mileage anxiety of the widespread electric vehicles.One of the biggest bottlenecks lies in the sluggish kinetics of the Li^(+)intercalation into the graphite anode;slow intercalation will lead to lithium metal plating,severe side reactions,and safety concerns.The premise to solve these problems is to fully understand the reaction pathways and rate-determining steps of graphite during fast Li^(+)intercalation.Herein,we compare the Li^(+)diffusion through the graphite particle,interface,and electrode,uncover the structure of the lithiated graphite at high current densities,and correlate them with the reaction kinetics and electrochemical performances.It is found that the rate-determining steps are highly dependent on the particle size,interphase property,and electrode configuration.Insufficient Li^(+)diffusion leads to high polarization,incomplete intercalation,and the coexistence of several staging structures.Interfacial Li^(+)diffusion and electrode transportation are the main rate-determining steps if the particle size is less than 10μm.The former is highly dependent on the electrolyte chemistry and can be enhanced by constructing a fluorinated interphase.Our findings enrich the understanding of the graphite structural evolution during rapid Li^(+)intercalation,decipher the bottleneck for the sluggish reaction kinetics,and provide strategic guidelines to boost the fast-charging performance of graphite anode. 展开更多
关键词 Fast-charging Graphite anode Cryogenic transmission electron microscopy(cryo-TEM) High-rate kinetics
下载PDF
Influence of bimodal non-basal texture on microstructure characteristics,texture evolution and deformation mechanisms of AZ31 magnesium alloy sheet rolled at liquid-nitrogen temperature 被引量:3
15
作者 Shouzuo Zhang Li Hu +7 位作者 Yutao Ruan Tao Zhou Qiang Chen Yang Zhong Laixin Shi Mingao Li Mingbo Yang Shuyong Jiang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2600-2609,共10页
Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending pr... Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending process with subsequent annealing(ECAR-CB-A)process.Results demonstrate that this sheet shows no edge cracks until the accumulated thickness reduction reaches about 18.5%,which is about 105.6%larger than that of the sheet with traditional basal texture.Characterization experiments including optical microstructure(OM),X-ray diffractometer(XRD),and electron backscatter diffraction(EBSD)measurements are then performed to explore the microstructure characteristics,texture evolution and deformation mechanisms during cryogenic rolling.Experimental observations confirm the occurrence of abundant{10–12}extension twins(ETs),twin-twin interactions among{10–12}ET variants and{10–12}-{10–12}double twins(DTs).The twinning behaviors as for{10–12}ETs are responsible for the concentration of c-axes of grains towards normal direction(ND)and the formation of transverse direction(TD)-component texture at the beginning of cryogenic rolling.The twinning behaviors with respect to{10–12}-{10–12}DTs are responsible for the disappearance of TD-component texture at the later stage of cryogenic rolling.The involved deformation mechanisms can be summarized as follows:Firstly{10–12}ETs dominate the plastic deformation.Subsequently,dislocation slip,especially basal<a>slip,starts to sustain more plastic strain,while{10–12}ETs occur more frequently and enlarge continuously,resulting in the formation of twin-twin interaction among{10–12}ET variants.With the increasing rolling passes,{10–12}-{10–12}DTs incorporate in the plastic deformation and dislocation slip serves as the major one to sustain plastic strain.The activities of basal<a>slip,{10–12}ETs and{10–12}-{10–12}DTs benefit in accommodating the plastic strain in sheet thickness,which contributes to the improved rolling formability in AZ31 Mg alloy sheet with bimodal non-basal texture during cryogenic rolling. 展开更多
关键词 AZ31 Mg alloy Bimodal non-basal texture Cryogenic rolling Microstructure evolution Deformation mechanism
下载PDF
Progresses on cryo-tribology:lubrication mechanisms,detection methods and applications 被引量:2
16
作者 Wenyan Cui Hongzhan Chen +3 位作者 Jianxun Zhao Quansheng Ma Qiang Xu Tianbao Ma 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期62-88,共27页
Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels,liquid fuel rockets,space infrared teles... Tribology at cryogenic temperatures has attracted much attention since the 1950s with the acceleration of its applications in high-tech equipment such as cryogenic wind tunnels,liquid fuel rockets,space infrared telescopes,superconducting devices,and planetary exploration,which require solid lubrication for moving parts at low temperatures down to 4 K in cryogenic liquid,gaseous,or vacuum environments.Herein,the research progress regarding cryo-tribology is reviewed.The tribological properties and mechanisms of solid lubricants listed as carbon materials,molybdenum disulfide,polymers,and polymer-based composites with decreasing temperature are summarized.The friction coefficient increases with decreasing temperature induced by thermally activated processes.The mechanism of transfer film formation should be considered as a significant way to enhance the tribological properties of solid lubricants.In addition,applications of solid lubrication on moving parts under cryogenic conditions,such as spherical plain bearings and roller bearings,are introduced.The technology for tribological testing of materials and bearings at cryogenic temperatures is summarized,where the environmental control,motion and loading realization,as well as friction and wear measurement together in a low-temperature environment,result in the difficulties and challenges of the low-temperature tribotester.In particular,novel technologies and tribotesters have been developed for tribotests and tribological studies of solid lubricants,spherical plain bearings,and roller bearings,overcoming limitations regarding cooling in vacuum and resolution of friction measurement,among others,and concentrating on in-situ observation of friction interface.These not only promote a deep understanding of friction and wear mechanism at low temperatures,but also provide insights into the performance of moving parts or components in cryogenic applications. 展开更多
关键词 low temperature CRYOGENIC tribotester self-lubricating materials BEARING
下载PDF
Effect of deep cryogenic treatment on the microstructural,mechanical and ballistic properties of AA7075-T6 aluminum alloy 被引量:1
17
作者 S.Dharani kumar U.Magarajan +1 位作者 Saurabh S Kumar Rodríguez-Millan M 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期101-110,共10页
The study focused on investigating the effect of Deep Cryogenic Treatment(DCT)on the mechanical and ballistic properties of AA7075-T6 aluminum alloy.The microstructure,microhardness,tensile strength,and impact strengt... The study focused on investigating the effect of Deep Cryogenic Treatment(DCT)on the mechanical and ballistic properties of AA7075-T6 aluminum alloy.The microstructure,microhardness,tensile strength,and impact strength of the Base Material(BM)and DCT-treated 7075 samples were analyzed through metallographic analysis and mechanical tests.The microstructure of the DCT-treated 7075 samples revealed fine grains and a distribution of secondary phase particles.The tensile strength,impact strength,and microhardness of DCT-treated samples increased by 7.41%,4%,and 9.68%,respectively,compared to the BM samples.The fractography analysis of the tensile samples showed cleavage facets,microvoids,and dimples in both the samples.The ballistic behavior of the BM and DCT target plates were studied by impacting hard steel core projectiles at a velocity of 750±10 m/s.The target plates failed due to petaling and ductile hole enlargement,and the depth of penetration(DOP)of the DCT target was less than that of the BM target,indicating a higher ballistic resistance.The post-ballistic microstructure examination of the target plates showed the formation of an Adiabatic Shear Band(ASB)without any cracks.It was concluded that the DCT treatment improved the mechanical and ballistic properties of the aluminum alloy due to grain refinement and high dislocation density. 展开更多
关键词 Deep cryogenic treatment AA7075-T6 Mechanical properties BALLISTIC Adiabatic shear band
下载PDF
Feasibility Analysis of Typical Cryogenic Processes for Hydrogen-Mixed Natural Gas Separation 被引量:1
18
作者 Tingxia Ma Longyao Zhang +3 位作者 Lin Wang Jinqiang Wu Wenying Hui Cheng Yu 《Energy Engineering》 EI 2023年第4期911-930,共20页
Hydrogen energy is a crucial carrier for the growth of the energy system and its low-carbon transformation.Using natural gas as a carrier of hydrogen transport and the natural gas pipeline network for transportation i... Hydrogen energy is a crucial carrier for the growth of the energy system and its low-carbon transformation.Using natural gas as a carrier of hydrogen transport and the natural gas pipeline network for transportation is a significant step toward realizing large-scale and long-distance hydrogen transport.Hydrogen-mixed natural gas is mainly separated into hydrogen and natural gas by physical methods at present.High purity of hydrogen recovery,but the recovery rate is low.At the same time,compared with natural gas,liquefied natural gas is more economical and flexible.This study analyzes three typical cryogenic separation processes.The results show that the hydrogen separation efficiency and specific energy consumption increase and the liquefaction rate and energy consumption decrease as the hydrogen ratio increases.The energy consumption and specific energy consumption of C3-MRC are lower than the MRC and the cascade liquefaction processes.Besides,as the pressure increases in the C3-MRC liquefaction process,the liquefaction and hydrogen separation efficiency increase and subsequently drop.Different hydrogen content has the highest hydrogen separation efficiency and liquefaction efficiency under different feed gas pressure conditions.The total exergy losses of the C3-MRC are the least in different hydrogen fractions,which are 37.59%and 21.77%less in the 25%hydrogen fraction,and 37.89%and 21.37%less in the 30%hydrogen fraction.Moreover,the exergy efficiency of C3-MRC are 87.68%and 88.06%when the hydrogen fraction are 25%and 30%,higher than the other two processes,which implies that in 25%and 30%fractions,making it more suitable for separate the hydrogen by the cryogenic separation. 展开更多
关键词 Hydrogen-mixed natural gas natural gas cryogenic separation HYDROGEN
下载PDF
Research and Prediction on the Properties of Concrete at Cryogenic Temperature Based on Gray Theory
19
作者 ZHOU Dawei LIU Juanhong +3 位作者 CHENG Linian WU Ruidong ZOU Min WANG Jiahao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1056-1064,共9页
To solve the cryogenic temperature problems faced by all-concrete liquefied natural gas(ACLNG)storage tanks during servicing,a low temperature resistant and high strength concrete(LHC)was designed from the perspective... To solve the cryogenic temperature problems faced by all-concrete liquefied natural gas(ACLNG)storage tanks during servicing,a low temperature resistant and high strength concrete(LHC)was designed from the perspectives of reducing water-binder ratio,removing coarse aggregates,optimizing composite mineral admixture and utilizing steel fibers.The variation laws of compressive and tensile strength,elastic modulus and Poisson’s ratio for C60 concrete and LHC were compared and analyzed under the temperatures from 10 to-165℃through uniaxial compression and tensile tests.The rapid freezing method was adopted to analyze the evolution process of mass and relative dynamic elastic modulus loss rates for C60 and LHC in 0-300 freeze-thaw cycles.The gas permeability test was carried out,and the laws of gas permeability coefficient varied with temperature and cryogenic freeze-thaw cycles were obtained.Then,the grey dynamic model GM(1,1)was used to predict the variation laws of physical and mechanical parameters on the basis of the test data.The test results demonstrate that the compressive strength,elastic modulus and Poisson’s ratio for both C60 and LHC increase significantly from 10 to-165℃,but the specific variation laws are difierent,and there is a phenomenon that some parameters decrease after reaching a critical temperature range for C60.The uniaxial tensile strength increases first and then decreases as temperature decreases,and finally increases slightly at-165℃for both C60 and LHC.The mass and relative dynamic elastic modulus loss rates of LHC are much lower than that of C60 under different freeze-thaw cycles.The gas permeability coefficient of C60 declines gradually with the drop of temperature,and increases gradually with the number of freeze-thaw cycles while the gas permeability coefficient of LHC basically remains stable and is much lower than that of C60.Therefore,such a conclusion can be drawn that LHC has better properties at cryogenic temperature.On the premise of providing consistent functional mode,GM(1,1)can predict the test data with high accuracy,which well reflects the variation laws of relevant parameters. 展开更多
关键词 CONCRETE cryogenic temperature freeze-thaw cycles mechanical properties gas permeability coefficient grey theory
下载PDF
Squeezed state generation using cryogenic InP HEMT nonlinearity
20
作者 Ahmad Salmanogli 《Journal of Semiconductors》 EI CAS CSCD 2023年第5期69-77,共9页
This study focuses on generating and manipulating squeezed states with two external oscillators coupled by an InP HEMT operating at cryogenic temperatures.First,the small-signal nonlinear model of the transistor at hi... This study focuses on generating and manipulating squeezed states with two external oscillators coupled by an InP HEMT operating at cryogenic temperatures.First,the small-signal nonlinear model of the transistor at high frequency at 5 K is analyzed using quantum theory,and the related Lagrangian is theoretically derived.Subsequently,the total quantum Hamiltonian of the system is derived using Legendre transformation.The Hamiltonian of the system includes linear and nonlinear terms by which the effects on the time evolution of the states are studied.The main result shows that the squeezed state can be generated owing to the transistor’s nonlinearity;more importantly,it can be manipulated by some specific terms introduced in the nonlinear Hamiltonian.In fact,the nonlinearity of the transistors induces some effects,such as capacitance,inductance,and second-order transconductance,by which the properties of the external oscillators are changed.These changes may lead to squeezing or manipulating the parameters related to squeezing in the oscillators.In addition,it is theoretically derived that the circuit can generate two-mode squeezing.Finally,second-order correlation(photon counting statistics)is studied,and the results demonstrate that the designed circuit exhibits antibunching,where the quadrature operator shows squeezing behavior. 展开更多
关键词 quantum theory squeezed state cryogenic low noise amplifier InP HEMT
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部