Two kinds of commercial ammonium polyphosphate (APP) and three kinds of APP which were prepared in the laboratory were studied by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), scannin...Two kinds of commercial ammonium polyphosphate (APP) and three kinds of APP which were prepared in the laboratory were studied by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In identification of the form Ⅱ crystal APP by XRD and FTIR, some discrepancies were discussed. It is pointed out that the absorbance of the FTIR spectra at 682 cm^-1 can exist not only in the form Ⅰ APP, but also in the form Ⅱ APP with the crystal lattice defects. The SEM images indicate that the form Ⅱ APP is of multilayer crystal structure. XRD and TEM can reveal the crystal lattice defects.展开更多
Two types of electroformed nickel liners of shaped charges were prepared by electroforming technique. X-ray diffraction (XRD), transmission electron microscopy (TEM), electron backscattering diffraction (EBSD) t...Two types of electroformed nickel liners of shaped charges were prepared by electroforming technique. X-ray diffraction (XRD), transmission electron microscopy (TEM), electron backscattering diffraction (EBSD) technique and high resolution electron microscopy (HREM) have been employed to investigate the crystal defects formed in electroformed nickel liners of shaped charges. The result shows that (100) fiber texture which is parallel to the grown direction exists in the electroformed nickel prepared by using direct current electroforming without any additives, and (111) fiber texture exists in the electroformed nickel prepared by using direct current electroforming with additives. The deposits prepared by using direct current electroforming possess columnar grain with an average grain size of 30 μm in width and 170 μm in length. The deposits prepared with additives are composed of a colony structures with grain size of about 29 nm, and a lot of crystal defects such as twins, antiphase boundaries and stacking faults have been observed in the electroformed nickel.展开更多
Observation under high resolution electron microscope shows that the continuous bombing of high speed ions produces a great amount of vacant site defects.The assembly of vacancies forms vacant dish,and the collapase o...Observation under high resolution electron microscope shows that the continuous bombing of high speed ions produces a great amount of vacant site defects.The assembly of vacancies forms vacant dish,and the collapase of vacant dish forms stacking fault tetrahedrons and oth- er crystal defects.The interfaces between phase ε(Fe_(2-3)N)and phase γ'(Fe_4N)are smooth, straight and coherent,and they have the orientation relationships of(11)//(0001)and [110]/[110] .展开更多
The microstructure of plasma nitrided layer catalyzed by rare-earth elementshas been studied with TEM. The results show that the grains of gamma ft-Fe_4N phase are refined byrare-earth elements and the plane defects i...The microstructure of plasma nitrided layer catalyzed by rare-earth elementshas been studied with TEM. The results show that the grains of gamma ft-Fe_4N phase are refined byrare-earth elements and the plane defects in boundary are increased by rare-earth elements. Theaddition of rare-earth element increases the bombardment effect and the number of crystal defectssuch as vacancies, dislocation loops, twins and stacking faults in gamma ft -Fe_4N phase and canproduce the high-density dislocations in the ferrite of diffusion layer at a distance 0.08mm fromthe surface. The production of a number of crystal defects is one of important reasons whyrare-earth element accelerates the diffusion of nitrogen atoms during plasma-nitriding.展开更多
As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislo...As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislocations, voids, twin, and small defects. Their effects on device performance were discussed. Dislocations and their surrounding regions can act as paths for the leakage current of SBD in single crystals. However, not all voids lead to leakage current. There's no strong evidence yet to show small defects affect the electrical properties. Doping impurity was definitely irrelated to the leakage current. Finally, the formation mechanism of the defects was analyzed. Most small defects were induced by mechanical damages. The screw dislocation originated from a subgrain boundary. The edge dislocation lying on a plane slightly tilted towards the(102) plane, the(101) being the possible slip plane. The voids defects like hollow nanopipes, PNPs, NSGs and line-shaped grooves may be caused by the condensation of excess oxygen vacancies, penetration of tiny bubbles or local meltback. The nucleation of twin lamellae occurred at the initial stage of "shoulder part" during the crystal growth. These results are helpful in controlling the occurrence of crystal defects and improving the device performance.展开更多
Electrochemical nitrogen reduction reaction(NRR)is a promising method for the synthesis of ammonia(NH3).However,the electrochemical NRR process remains a great challenge in achieving a high NH3 yield rate and a high F...Electrochemical nitrogen reduction reaction(NRR)is a promising method for the synthesis of ammonia(NH3).However,the electrochemical NRR process remains a great challenge in achieving a high NH3 yield rate and a high Faradaic efficiency(FE)due to the extremely strong N≡N bonds and the competing hydrogen evolution reaction(HER).Recently,bismuth telluride(Bi_(2)Te_(3))with two-dimensional layered structure has been reported as a promising catalyst for N_(2)fixation.Herein,to further enhance its NRR activity,a general doping strategy is developed to introduce and modulate the crystal defects of Bi_(2)Te_(3)nanosheets by adjusting the amount of Ce dopant(denoted as Ce_(x)-Bi_(2)Te_(3),where x represents the designed molar ratio of Ce/Bi).Meanwhile,the crystal defects can be designed and controlled by means of ion substitution and charge compensation.At−0.60 V versus the reversible hydrogen electrode(RHE),Ce_(0.3)-Bi_(2)Te_(3)exhibits a high NH_(3) yield(78.2μg·h^(−1)·mgcat^(−1)),a high FE(19.3%),excellent structural and electrochemical stability.Its outstanding catalytic activity is attributed to the tunable crystal defects by Ce doping.This work not only contributes to enhancing the NRR activity of Bi_(2)Te_(3)nanosheets,but also provides a reliable approach to prepare high-performance electrocatalysts by controlling the type and concentration of crystal defects for artificial N_(2)fixation.展开更多
Crystal defect engineering is widely used as an effective approach to regulate the optical and optoelectronic properties of semiconductor nanostructures.However,photogenerated electron-hole pair recombination centers ...Crystal defect engineering is widely used as an effective approach to regulate the optical and optoelectronic properties of semiconductor nanostructures.However,photogenerated electron-hole pair recombination centers caused by structural defects usually lead to the reduction of optoelectronic performance.In this work,a high-performance photodetector based on(GaN)_(1-x)(ZnO)_(x)solid solution nanowire with bicrystal structure is fabricated and it shows excellent photoresponse to ultraviolet and visible light.The highest responsivity of the photodetector is as high as 60,86 and 43 A/W under the irradiation of365 nm,532 nm and 650 nm,respectively.The corresponding response time is as fast as 170,320 and 160 ms.Such wide spectral responses can be attributed to various intermediate energy levels induced by the introduction of various structural defects and dopants in the solid solution nanowire.Moreover,the peculiar bicrystal boundary along the axial direction of the nanowire provides two parallel and fast transmission channels for photo-generated carriers,reducing the recombination of photo-generated carriers.Our findings provide a valued example using crystal defect engineering to broaden the photoresponse range and improve the photodetector performance and thus can be extended to other material systems for various optoelectronic applications.展开更多
A commercial epi-ready(201)β-Ga_(2)O_(3) wafer was investigated upon diamond sawing into pieces measuring 2.5×3 mm^(2).The defect structure and crystallinity in the cut samples has been studied by X-ray diffract...A commercial epi-ready(201)β-Ga_(2)O_(3) wafer was investigated upon diamond sawing into pieces measuring 2.5×3 mm^(2).The defect structure and crystallinity in the cut samples has been studied by X-ray diffraction and a selective wet etching technique.The density of defects was estimated from the average value of etch pits calculated,including near-edge regions,and was obtained close to 109 cm^(-2).Blocks with lattice orientation deviated by angles of 1-3 arcmin,as well as non-stoichiometric fractions with a relative strain about(1.0-1.5)×10^(-4)in the[201]direction,were found.Crystal perfection was shown to decrease significantly towards the cutting lines of the samples.To reduce the number of structural defects and increase the crystal perfection of the samples via increasing defect motion mobility,the thermal annealing was employed.Polygonization and formation of a mosaic structure coupled with dislocation wall appearance upon 3 h of annealing at 1100℃ was observed.The fractions characterized by non-stoichiometry phases and the block deviation disappeared.The annealing for 11 h improved the homogeneity and perfection in the crystals.The average density of the etch pits dropped down significantly to 8×10^(6) cm^(-2).展开更多
Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique...Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique is applied. By expanding the displacement field and the material constants (mass density and elastic stiffness) in periodic wavelets, the explicit formulations of an eigenvalue problem for the plane harmonic bulk waves in such a phononic structure are derived. The point and line defect states in solid-liquid and solid-solid systems are calculated. Comparisons of the present results with those measured experimentally or those from the plane wave expansion method show that the present method can yield accurate results with faster convergence and less computing time.展开更多
Imperfections in the(001) plate of rubidium hydrogen phthalate(RAP, RbC8H5O4) crystals have been studied by means of X-ray topography. The main defects are the grown-in dislocations, inclusions, growth layers and the ...Imperfections in the(001) plate of rubidium hydrogen phthalate(RAP, RbC8H5O4) crystals have been studied by means of X-ray topography. The main defects are the grown-in dislocations, inclusions, growth layers and the thermal strain lobes caused by heat. The large thermal strain nature was determined by an Inclusion Probed Method (IPM), which is due to the gradient of the interplanar spacing formed by atomic displacement to <110> directions.展开更多
S-doped and Al-doped GaSe crystals are promising materials for their applications in nonlinear frequency conversion devices. The optical and defect properties of pure, S-doped, and Al-doped GaSe crystals were studied ...S-doped and Al-doped GaSe crystals are promising materials for their applications in nonlinear frequency conversion devices. The optical and defect properties of pure, S-doped, and Al-doped GaSe crystals were studied by using photoluminescence(PL) and Fourier transform infrared spectroscopy(FT-IR). The micro-topography of(0001) face of these samples was observed by using scanning electron microscope(SEM) to investigate the influence of the doped defects on the intralayer and interlayer chemical bondings. The doped S or Al atoms form the SSe^0 or AlGa^+1) substitutional defects in the layer GaSe structure, and the positive center of AlGa-^+1 could induce defect complexes. The incorporations of S and Al atoms can change the optical and mechanical properties of the GaSe crystal by influencing the chemical bonding of the layer structure. The study results may provide guidance for the crystal growth and further applications of S-doped and Al-doped GaSe crystals.展开更多
We investigate in detail the influence of line defects on focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens. Through simulations, we find that a focusing can always be observed when a l...We investigate in detail the influence of line defects on focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens. Through simulations, we find that a focusing can always be observed when a line defect in the lens is introduced along the light transmission direction and the width of the line defect is less than λ/2. However, there appear two focusings when the width of the line defect is more than λ/2. When the line defect is introduced along the direction perpendicular to the transmission, there is always one focusing.展开更多
Under a simple shear flow and in a static external magnetic field, the production of defects in the director-aligning regime of nematic liquid crystals has been investigated in terms of the Leslie-Ericksen theory. The...Under a simple shear flow and in a static external magnetic field, the production of defects in the director-aligning regime of nematic liquid crystals has been investigated in terms of the Leslie-Ericksen theory. The equation of motion of the nematic director, which conforms to the driven over-damped sine-Gordon equation, has a soliton solution of the amplitude w. We show that the stationary state with the director uniformly oriented at a Leslie angle is only a metastable state and the potential, which governs the motion of the director, has a nmnber of stable stationary states. For a strong magnetic field, the higher energy barrier between the stable and unstable states leads the director to be locked along the magnetic field direction. However, at the appropriate shear rate and magnetic field the defects, which appear as a stable solitary solution, can be nucleated from a uniformly aligned nematic liquid crystal. We have calculated the stationary travelling velocity of the solitary waves and the distance between a pair of defects.展开更多
We investigate the position dependent spontaneous emission spectra of a A-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap res...We investigate the position dependent spontaneous emission spectra of a A-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes.展开更多
Deliberately introducing defects into photonic crystals is an important way to functionalize the photonic crystals. We prepare a special large-scale three-dimensional (3D) photonic crystal (PC) with designed defec...Deliberately introducing defects into photonic crystals is an important way to functionalize the photonic crystals. We prepare a special large-scale three-dimensional (3D) photonic crystal (PC) with designed defects by an easy and low-cost method. The defect layer consists of photoresist strips or air-core strips. Field emission scanning electron microscopy (FESEM) shows that the 3D PC is of good quality and the defect layer is uniform. Different defect states shown in the ultraviolet-visible spectra are induced by the photoresist strip layer and air-core strip layer. The special large-scale 3D PC can be tested for integrated optical circuits, and the defects can act as optical waveguides.展开更多
We investigate the flow induced by annihilation of a pair of defects in liquid crystals using the Doi theory with the Marrucci-Greco potential, in which the orientation state is described with the orientational distri...We investigate the flow induced by annihilation of a pair of defects in liquid crystals using the Doi theory with the Marrucci-Greco potential, in which the orientation state is described with the orientational distribution function. We have numerically studied both the transient behaviors of two defects with different structures and their velocity field, and estimated the magnitude of the induced velocity. A defect with positive strength moves faster than one with negative strength. The long-range order of the molecular orientation field has a large effect on the annihilation time, and the annihilation time is reduced by increasing the long-range order. We find that flows are induced during the annihilation of a pair of defects and that several vortices are generated in the vicinity of the defects. The maximum velocity is predicted to develop spatially between the two defects just after their annihilation in time. In our simulation, the maximum induced velocity reaches an order of 10 μm/s. The induced velocity increases with increasing long range-order and nematic potential strength.展开更多
Point defect states in two-dimensional phononic crystal of a hollow mercury cylinder in a water host are studied. An improved plane expansion method combined with the supercell technique is used to calculate the band ...Point defect states in two-dimensional phononic crystal of a hollow mercury cylinder in a water host are studied. An improved plane expansion method combined with the supercell technique is used to calculate the band gaps and the pressure distribution at the defect position. The sonic pressure of defect modes shows that the waves are localized at or near the defect. As the filing fraction increases, more defect modes appear in the band gaps.展开更多
Based on finite-difference time-domain(FDTD) method,the wave propagation and localization in two-dimensional defect-containing piezoelectric phononic crystals are investigated when the mechanical-electrical coupling i...Based on finite-difference time-domain(FDTD) method,the wave propagation and localization in two-dimensional defect-containing piezoelectric phononic crystals are investigated when the mechanical-electrical coupling is taken into account.The characteristics of localized defect modes are studied,and the effects of the number and direction of defects on the defect modes and transmission coefficients are discussed.Numerical results of defect modes and transmission coefficients are presented for BaTiO3/polymer piezocomposite,and from which we can see that the number and direction of defects have pronounced effects on the defect modes and transmission coefficients.The results also show the existence of elastic wave localization in piezoelectric phononic crystals containing defects.展开更多
Potassium tantalate niobate (KTa1-xNbxO3, KTN) crystals with different dimensions and quality situations were grown by Czochralski method. Crystal growth process and morphology properties of KTN are presented in thi...Potassium tantalate niobate (KTa1-xNbxO3, KTN) crystals with different dimensions and quality situations were grown by Czochralski method. Crystal growth process and morphology properties of KTN are presented in this paper. It was found that some defects, such as bubble, inclusion, crack, dislocation etc., can all appear if the crystal is grown in an improper condition. The character and formation mechanism of such defects in macro growth are discussed. We consider that the CO2, which was not released absolutely during the sintering process and dissolved in the melt, led to bubbles. The composition of the inclusion caused by high pulling and rotation rates is KTN polycrystalline. The crack and dislocation in KTN crystal mainly come from improper temperature field. Etching and high-resolution X-ray diffraction (HRXRD) experiment results indicate that the central area is the defects concentrated.展开更多
KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement ...KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 p-m. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.展开更多
基金Sponsored by the National Key Technology R&D Program(2006BAE03B05-2)
文摘Two kinds of commercial ammonium polyphosphate (APP) and three kinds of APP which were prepared in the laboratory were studied by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In identification of the form Ⅱ crystal APP by XRD and FTIR, some discrepancies were discussed. It is pointed out that the absorbance of the FTIR spectra at 682 cm^-1 can exist not only in the form Ⅰ APP, but also in the form Ⅱ APP with the crystal lattice defects. The SEM images indicate that the form Ⅱ APP is of multilayer crystal structure. XRD and TEM can reveal the crystal lattice defects.
基金supported in part by National Natural Science Foundation of Chinaunder Grant No.50671012
文摘Two types of electroformed nickel liners of shaped charges were prepared by electroforming technique. X-ray diffraction (XRD), transmission electron microscopy (TEM), electron backscattering diffraction (EBSD) technique and high resolution electron microscopy (HREM) have been employed to investigate the crystal defects formed in electroformed nickel liners of shaped charges. The result shows that (100) fiber texture which is parallel to the grown direction exists in the electroformed nickel prepared by using direct current electroforming without any additives, and (111) fiber texture exists in the electroformed nickel prepared by using direct current electroforming with additives. The deposits prepared by using direct current electroforming possess columnar grain with an average grain size of 30 μm in width and 170 μm in length. The deposits prepared with additives are composed of a colony structures with grain size of about 29 nm, and a lot of crystal defects such as twins, antiphase boundaries and stacking faults have been observed in the electroformed nickel.
文摘Observation under high resolution electron microscope shows that the continuous bombing of high speed ions produces a great amount of vacant site defects.The assembly of vacancies forms vacant dish,and the collapase of vacant dish forms stacking fault tetrahedrons and oth- er crystal defects.The interfaces between phase ε(Fe_(2-3)N)and phase γ'(Fe_4N)are smooth, straight and coherent,and they have the orientation relationships of(11)//(0001)and [110]/[110] .
文摘The microstructure of plasma nitrided layer catalyzed by rare-earth elementshas been studied with TEM. The results show that the grains of gamma ft-Fe_4N phase are refined byrare-earth elements and the plane defects in boundary are increased by rare-earth elements. Theaddition of rare-earth element increases the bombardment effect and the number of crystal defectssuch as vacancies, dislocation loops, twins and stacking faults in gamma ft -Fe_4N phase and canproduce the high-density dislocations in the ferrite of diffusion layer at a distance 0.08mm fromthe surface. The production of a number of crystal defects is one of important reasons whyrare-earth element accelerates the diffusion of nitrogen atoms during plasma-nitriding.
基金the Financial support from the National key Research and Development Program of China(Nso.2018YFB0406502,2016YFB1102201)the National Natural Science Foundation of China(Grant No.51321091)+2 种基金the key Research and Development Program of Shandong Province(No.2018CXGC0410)the Young Scholars Program of Shandong University(No.2015WLJH36)the 111 Project 2.0(No.BP2018013)
文摘As a wide-bandgap semiconductor(WBG), β-Ga_2O_3 is expected to be applied to power electronics and solar blind UV photodetectors. In this review, defects in β-Ga_2O_3 single crystals were summarized, including dislocations, voids, twin, and small defects. Their effects on device performance were discussed. Dislocations and their surrounding regions can act as paths for the leakage current of SBD in single crystals. However, not all voids lead to leakage current. There's no strong evidence yet to show small defects affect the electrical properties. Doping impurity was definitely irrelated to the leakage current. Finally, the formation mechanism of the defects was analyzed. Most small defects were induced by mechanical damages. The screw dislocation originated from a subgrain boundary. The edge dislocation lying on a plane slightly tilted towards the(102) plane, the(101) being the possible slip plane. The voids defects like hollow nanopipes, PNPs, NSGs and line-shaped grooves may be caused by the condensation of excess oxygen vacancies, penetration of tiny bubbles or local meltback. The nucleation of twin lamellae occurred at the initial stage of "shoulder part" during the crystal growth. These results are helpful in controlling the occurrence of crystal defects and improving the device performance.
基金the National Natural Science Foundation of China(Nos.22074137 and 21721003).
文摘Electrochemical nitrogen reduction reaction(NRR)is a promising method for the synthesis of ammonia(NH3).However,the electrochemical NRR process remains a great challenge in achieving a high NH3 yield rate and a high Faradaic efficiency(FE)due to the extremely strong N≡N bonds and the competing hydrogen evolution reaction(HER).Recently,bismuth telluride(Bi_(2)Te_(3))with two-dimensional layered structure has been reported as a promising catalyst for N_(2)fixation.Herein,to further enhance its NRR activity,a general doping strategy is developed to introduce and modulate the crystal defects of Bi_(2)Te_(3)nanosheets by adjusting the amount of Ce dopant(denoted as Ce_(x)-Bi_(2)Te_(3),where x represents the designed molar ratio of Ce/Bi).Meanwhile,the crystal defects can be designed and controlled by means of ion substitution and charge compensation.At−0.60 V versus the reversible hydrogen electrode(RHE),Ce_(0.3)-Bi_(2)Te_(3)exhibits a high NH_(3) yield(78.2μg·h^(−1)·mgcat^(−1)),a high FE(19.3%),excellent structural and electrochemical stability.Its outstanding catalytic activity is attributed to the tunable crystal defects by Ce doping.This work not only contributes to enhancing the NRR activity of Bi_(2)Te_(3)nanosheets,but also provides a reliable approach to prepare high-performance electrocatalysts by controlling the type and concentration of crystal defects for artificial N_(2)fixation.
基金partially supported by the National Natural Science Foundation of China(Nos.51702326 and 51872296)the Liaoning Province Natural Science Foundation(No.2019-MS333)+3 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2019197)the Shenyang National Laboratory for Materials Science(No.L2019F36)the Shenyang Planning Project of Science and Technology(No.18-013-0-52)Tomsk Polytechnic University Competitiveness Enhancement Program grant with project number TPU CEP NOC N.M.Kizhnera188/2020。
文摘Crystal defect engineering is widely used as an effective approach to regulate the optical and optoelectronic properties of semiconductor nanostructures.However,photogenerated electron-hole pair recombination centers caused by structural defects usually lead to the reduction of optoelectronic performance.In this work,a high-performance photodetector based on(GaN)_(1-x)(ZnO)_(x)solid solution nanowire with bicrystal structure is fabricated and it shows excellent photoresponse to ultraviolet and visible light.The highest responsivity of the photodetector is as high as 60,86 and 43 A/W under the irradiation of365 nm,532 nm and 650 nm,respectively.The corresponding response time is as fast as 170,320 and 160 ms.Such wide spectral responses can be attributed to various intermediate energy levels induced by the introduction of various structural defects and dopants in the solid solution nanowire.Moreover,the peculiar bicrystal boundary along the axial direction of the nanowire provides two parallel and fast transmission channels for photo-generated carriers,reducing the recombination of photo-generated carriers.Our findings provide a valued example using crystal defect engineering to broaden the photoresponse range and improve the photodetector performance and thus can be extended to other material systems for various optoelectronic applications.
基金funded by the Russian Science Foundation,project#23-29-10196。
文摘A commercial epi-ready(201)β-Ga_(2)O_(3) wafer was investigated upon diamond sawing into pieces measuring 2.5×3 mm^(2).The defect structure and crystallinity in the cut samples has been studied by X-ray diffraction and a selective wet etching technique.The density of defects was estimated from the average value of etch pits calculated,including near-edge regions,and was obtained close to 109 cm^(-2).Blocks with lattice orientation deviated by angles of 1-3 arcmin,as well as non-stoichiometric fractions with a relative strain about(1.0-1.5)×10^(-4)in the[201]direction,were found.Crystal perfection was shown to decrease significantly towards the cutting lines of the samples.To reduce the number of structural defects and increase the crystal perfection of the samples via increasing defect motion mobility,the thermal annealing was employed.Polygonization and formation of a mosaic structure coupled with dislocation wall appearance upon 3 h of annealing at 1100℃ was observed.The fractions characterized by non-stoichiometry phases and the block deviation disappeared.The annealing for 11 h improved the homogeneity and perfection in the crystals.The average density of the etch pits dropped down significantly to 8×10^(6) cm^(-2).
基金the National Natural Science Foundation of China(No.10632020)the German Research Foundation(No.ZH 15/11-1)jointly by the China Scholarship Council and the German Academic Exchange Service(No.D/08/01795).
文摘Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique is applied. By expanding the displacement field and the material constants (mass density and elastic stiffness) in periodic wavelets, the explicit formulations of an eigenvalue problem for the plane harmonic bulk waves in such a phononic structure are derived. The point and line defect states in solid-liquid and solid-solid systems are calculated. Comparisons of the present results with those measured experimentally or those from the plane wave expansion method show that the present method can yield accurate results with faster convergence and less computing time.
文摘Imperfections in the(001) plate of rubidium hydrogen phthalate(RAP, RbC8H5O4) crystals have been studied by means of X-ray topography. The main defects are the grown-in dislocations, inclusions, growth layers and the thermal strain lobes caused by heat. The large thermal strain nature was determined by an Inclusion Probed Method (IPM), which is due to the gradient of the interplanar spacing formed by atomic displacement to <110> directions.
基金Project supported by Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.CXJJ-16M128)
文摘S-doped and Al-doped GaSe crystals are promising materials for their applications in nonlinear frequency conversion devices. The optical and defect properties of pure, S-doped, and Al-doped GaSe crystals were studied by using photoluminescence(PL) and Fourier transform infrared spectroscopy(FT-IR). The micro-topography of(0001) face of these samples was observed by using scanning electron microscope(SEM) to investigate the influence of the doped defects on the intralayer and interlayer chemical bondings. The doped S or Al atoms form the SSe^0 or AlGa^+1) substitutional defects in the layer GaSe structure, and the positive center of AlGa-^+1 could induce defect complexes. The incorporations of S and Al atoms can change the optical and mechanical properties of the GaSe crystal by influencing the chemical bonding of the layer structure. The study results may provide guidance for the crystal growth and further applications of S-doped and Al-doped GaSe crystals.
基金Project supported by the National Natural Science Foundation of China (Grant No.10704006)
文摘We investigate in detail the influence of line defects on focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens. Through simulations, we find that a focusing can always be observed when a line defect in the lens is introduced along the light transmission direction and the width of the line defect is less than λ/2. However, there appear two focusings when the width of the line defect is more than λ/2. When the line defect is introduced along the direction perpendicular to the transmission, there is always one focusing.
基金supported by the National Natural Science Foundation of China (Grant No 29874011)State Basic Research Program of China (Grant No 1999064800)
文摘Under a simple shear flow and in a static external magnetic field, the production of defects in the director-aligning regime of nematic liquid crystals has been investigated in terms of the Leslie-Ericksen theory. The equation of motion of the nematic director, which conforms to the driven over-damped sine-Gordon equation, has a soliton solution of the amplitude w. We show that the stationary state with the director uniformly oriented at a Leslie angle is only a metastable state and the potential, which governs the motion of the director, has a nmnber of stable stationary states. For a strong magnetic field, the higher energy barrier between the stable and unstable states leads the director to be locked along the magnetic field direction. However, at the appropriate shear rate and magnetic field the defects, which appear as a stable solitary solution, can be nucleated from a uniformly aligned nematic liquid crystal. We have calculated the stationary travelling velocity of the solitary waves and the distance between a pair of defects.
文摘We investigate the position dependent spontaneous emission spectra of a A-type three-level atom with one transition coupled to the free vacuum reservoir and the other one coupled to a double-band photonic band gap reservoir with a defect mode in the band gap. It is shown that, for the atom at the defect location, we have a two-peak spectrum with a wide dark line due to the strong coupling between the atom and the defect mode. While, when the atom is far from the defect location (or in the absence of the defect mode), the spectrum has three peaks with two dark lines due to the coupling between the atom and the photonic band gap reservoir with the largest density of states near the band edges. On the other hand, we have a four-peak spectrum for the atom at the space in between. Moreover, the average spontaneous emission spectra of the atoms uniformly embedded in high dielectric or low dielectric regions are described. It is shown that the atoms embedded in high (low) dielectric regions far from the defect location, effectively couple to the modes of the lower (upper) photonic band. However, the atoms embedded in high dielectric or low dielectric regions at the defect location, are coupled mainly to the defect modes. While, the atoms uniformly embedded in high (low) dielectric regions with a normal distance from the defect location, are coupled to both of defect and lower (upper) photonic band modes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91122022 and 51172209)the Program for Changjiang Scholars and Innovative Research Team(PCSIRT)in University,China(Grant No.IRT13097)
文摘Deliberately introducing defects into photonic crystals is an important way to functionalize the photonic crystals. We prepare a special large-scale three-dimensional (3D) photonic crystal (PC) with designed defects by an easy and low-cost method. The defect layer consists of photoresist strips or air-core strips. Field emission scanning electron microscopy (FESEM) shows that the 3D PC is of good quality and the defect layer is uniform. Different defect states shown in the ultraviolet-visible spectra are induced by the photoresist strip layer and air-core strip layer. The special large-scale 3D PC can be tested for integrated optical circuits, and the defects can act as optical waveguides.
文摘We investigate the flow induced by annihilation of a pair of defects in liquid crystals using the Doi theory with the Marrucci-Greco potential, in which the orientation state is described with the orientational distribution function. We have numerically studied both the transient behaviors of two defects with different structures and their velocity field, and estimated the magnitude of the induced velocity. A defect with positive strength moves faster than one with negative strength. The long-range order of the molecular orientation field has a large effect on the annihilation time, and the annihilation time is reduced by increasing the long-range order. We find that flows are induced during the annihilation of a pair of defects and that several vortices are generated in the vicinity of the defects. The maximum velocity is predicted to develop spatially between the two defects just after their annihilation in time. In our simulation, the maximum induced velocity reaches an order of 10 μm/s. The induced velocity increases with increasing long range-order and nematic potential strength.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10864009)the Natural Science Foundation of Yunnan Province,China (Grant No. 2008CD109)the State Key Program of the National Natural Science of China (Grant No. 50734007)
文摘Point defect states in two-dimensional phononic crystal of a hollow mercury cylinder in a water host are studied. An improved plane expansion method combined with the supercell technique is used to calculate the band gaps and the pressure distribution at the defect position. The sonic pressure of defect modes shows that the waves are localized at or near the defect. As the filing fraction increases, more defect modes appear in the band gaps.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10672017 and 10632020)the China Postdoctoral Science Foundation+1 种基金Heilongjiang Province Postdoctoral Science FoundationJapan Society for the Promotion of Science(JSPS)
文摘Based on finite-difference time-domain(FDTD) method,the wave propagation and localization in two-dimensional defect-containing piezoelectric phononic crystals are investigated when the mechanical-electrical coupling is taken into account.The characteristics of localized defect modes are studied,and the effects of the number and direction of defects on the defect modes and transmission coefficients are discussed.Numerical results of defect modes and transmission coefficients are presented for BaTiO3/polymer piezocomposite,and from which we can see that the number and direction of defects have pronounced effects on the defect modes and transmission coefficients.The results also show the existence of elastic wave localization in piezoelectric phononic crystals containing defects.
文摘Potassium tantalate niobate (KTa1-xNbxO3, KTN) crystals with different dimensions and quality situations were grown by Czochralski method. Crystal growth process and morphology properties of KTN are presented in this paper. It was found that some defects, such as bubble, inclusion, crack, dislocation etc., can all appear if the crystal is grown in an improper condition. The character and formation mechanism of such defects in macro growth are discussed. We consider that the CO2, which was not released absolutely during the sintering process and dissolved in the melt, led to bubbles. The composition of the inclusion caused by high pulling and rotation rates is KTN polycrystalline. The crack and dislocation in KTN crystal mainly come from improper temperature field. Etching and high-resolution X-ray diffraction (HRXRD) experiment results indicate that the central area is the defects concentrated.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50875066)
文摘KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 p-m. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects.